Doxygen Source Code Documentation
eis_comhes.c File Reference
#include "f2c.h"Go to the source code of this file.
Functions | |
| int | comhes_ (integer *nm, integer *n, integer *low, integer *igh, doublereal *ar, doublereal *ai, integer *int__) |
Function Documentation
|
||||||||||||||||||||||||||||||||
|
Definition at line 8 of file eis_comhes.c.
00010 {
00011 /* System generated locals */
00012 integer ar_dim1, ar_offset, ai_dim1, ai_offset, i__1, i__2, i__3;
00013 doublereal d__1, d__2;
00014
00015 /* Local variables */
00016 extern /* Subroutine */ int cdiv_(doublereal *, doublereal *, doublereal *
00017 , doublereal *, doublereal *, doublereal *);
00018 static integer i__, j, m, la;
00019 static doublereal xi, yi, xr, yr;
00020 static integer mm1, kp1, mp1;
00021
00022
00023
00024 /* THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE COMHES, */
00025 /* NUM. MATH. 12, 349-368(1968) BY MARTIN AND WILKINSON. */
00026 /* HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 339-358(1971). */
00027
00028 /* GIVEN A COMPLEX GENERAL MATRIX, THIS SUBROUTINE */
00029 /* REDUCES A SUBMATRIX SITUATED IN ROWS AND COLUMNS */
00030 /* LOW THROUGH IGH TO UPPER HESSENBERG FORM BY */
00031 /* STABILIZED ELEMENTARY SIMILARITY TRANSFORMATIONS. */
00032
00033 /* ON INPUT */
00034
00035 /* NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL */
00036 /* ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM */
00037 /* DIMENSION STATEMENT. */
00038
00039 /* N IS THE ORDER OF THE MATRIX. */
00040
00041 /* LOW AND IGH ARE INTEGERS DETERMINED BY THE BALANCING */
00042 /* SUBROUTINE CBAL. IF CBAL HAS NOT BEEN USED, */
00043 /* SET LOW=1, IGH=N. */
00044
00045 /* AR AND AI CONTAIN THE REAL AND IMAGINARY PARTS, */
00046 /* RESPECTIVELY, OF THE COMPLEX INPUT MATRIX. */
00047
00048 /* ON OUTPUT */
00049
00050 /* AR AND AI CONTAIN THE REAL AND IMAGINARY PARTS, */
00051 /* RESPECTIVELY, OF THE HESSENBERG MATRIX. THE */
00052 /* MULTIPLIERS WHICH WERE USED IN THE REDUCTION */
00053 /* ARE STORED IN THE REMAINING TRIANGLES UNDER THE */
00054 /* HESSENBERG MATRIX. */
00055
00056 /* INT CONTAINS INFORMATION ON THE ROWS AND COLUMNS */
00057 /* INTERCHANGED IN THE REDUCTION. */
00058 /* ONLY ELEMENTS LOW THROUGH IGH ARE USED. */
00059
00060 /* CALLS CDIV FOR COMPLEX DIVISION. */
00061
00062 /* QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW, */
00063 /* MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
00064 */
00065
00066 /* THIS VERSION DATED AUGUST 1983. */
00067
00068 /* ------------------------------------------------------------------
00069 */
00070
00071 /* Parameter adjustments */
00072 ai_dim1 = *nm;
00073 ai_offset = ai_dim1 + 1;
00074 ai -= ai_offset;
00075 ar_dim1 = *nm;
00076 ar_offset = ar_dim1 + 1;
00077 ar -= ar_offset;
00078 --int__;
00079
00080 /* Function Body */
00081 la = *igh - 1;
00082 kp1 = *low + 1;
00083 if (la < kp1) {
00084 goto L200;
00085 }
00086
00087 i__1 = la;
00088 for (m = kp1; m <= i__1; ++m) {
00089 mm1 = m - 1;
00090 xr = 0.;
00091 xi = 0.;
00092 i__ = m;
00093
00094 i__2 = *igh;
00095 for (j = m; j <= i__2; ++j) {
00096 if ((d__1 = ar[j + mm1 * ar_dim1], abs(d__1)) + (d__2 = ai[j +
00097 mm1 * ai_dim1], abs(d__2)) <= abs(xr) + abs(xi)) {
00098 goto L100;
00099 }
00100 xr = ar[j + mm1 * ar_dim1];
00101 xi = ai[j + mm1 * ai_dim1];
00102 i__ = j;
00103 L100:
00104 ;
00105 }
00106
00107 int__[m] = i__;
00108 if (i__ == m) {
00109 goto L130;
00110 }
00111 /* .......... INTERCHANGE ROWS AND COLUMNS OF AR AND AI ..........
00112 */
00113 i__2 = *n;
00114 for (j = mm1; j <= i__2; ++j) {
00115 yr = ar[i__ + j * ar_dim1];
00116 ar[i__ + j * ar_dim1] = ar[m + j * ar_dim1];
00117 ar[m + j * ar_dim1] = yr;
00118 yi = ai[i__ + j * ai_dim1];
00119 ai[i__ + j * ai_dim1] = ai[m + j * ai_dim1];
00120 ai[m + j * ai_dim1] = yi;
00121 /* L110: */
00122 }
00123
00124 i__2 = *igh;
00125 for (j = 1; j <= i__2; ++j) {
00126 yr = ar[j + i__ * ar_dim1];
00127 ar[j + i__ * ar_dim1] = ar[j + m * ar_dim1];
00128 ar[j + m * ar_dim1] = yr;
00129 yi = ai[j + i__ * ai_dim1];
00130 ai[j + i__ * ai_dim1] = ai[j + m * ai_dim1];
00131 ai[j + m * ai_dim1] = yi;
00132 /* L120: */
00133 }
00134 /* .......... END INTERCHANGE .......... */
00135 L130:
00136 if (xr == 0. && xi == 0.) {
00137 goto L180;
00138 }
00139 mp1 = m + 1;
00140
00141 i__2 = *igh;
00142 for (i__ = mp1; i__ <= i__2; ++i__) {
00143 yr = ar[i__ + mm1 * ar_dim1];
00144 yi = ai[i__ + mm1 * ai_dim1];
00145 if (yr == 0. && yi == 0.) {
00146 goto L160;
00147 }
00148 cdiv_(&yr, &yi, &xr, &xi, &yr, &yi);
00149 ar[i__ + mm1 * ar_dim1] = yr;
00150 ai[i__ + mm1 * ai_dim1] = yi;
00151
00152 i__3 = *n;
00153 for (j = m; j <= i__3; ++j) {
00154 ar[i__ + j * ar_dim1] = ar[i__ + j * ar_dim1] - yr * ar[m + j
00155 * ar_dim1] + yi * ai[m + j * ai_dim1];
00156 ai[i__ + j * ai_dim1] = ai[i__ + j * ai_dim1] - yr * ai[m + j
00157 * ai_dim1] - yi * ar[m + j * ar_dim1];
00158 /* L140: */
00159 }
00160
00161 i__3 = *igh;
00162 for (j = 1; j <= i__3; ++j) {
00163 ar[j + m * ar_dim1] = ar[j + m * ar_dim1] + yr * ar[j + i__ *
00164 ar_dim1] - yi * ai[j + i__ * ai_dim1];
00165 ai[j + m * ai_dim1] = ai[j + m * ai_dim1] + yr * ai[j + i__ *
00166 ai_dim1] + yi * ar[j + i__ * ar_dim1];
00167 /* L150: */
00168 }
00169
00170 L160:
00171 ;
00172 }
00173
00174 L180:
00175 ;
00176 }
00177
00178 L200:
00179 return 0;
00180 } /* comhes_ */
|