Doxygen Source Code Documentation
eis_htrib3.c File Reference
#include "f2c.h"Go to the source code of this file.
Functions | |
| int | htrib3_ (integer *nm, integer *n, doublereal *a, doublereal *tau, integer *m, doublereal *zr, doublereal *zi) |
Function Documentation
|
||||||||||||||||||||||||||||||||
|
Definition at line 8 of file eis_htrib3.c.
00010 {
00011 /* System generated locals */
00012 integer a_dim1, a_offset, zr_dim1, zr_offset, zi_dim1, zi_offset, i__1,
00013 i__2, i__3;
00014
00015 /* Local variables */
00016 static doublereal h__;
00017 static integer i__, j, k, l;
00018 static doublereal s, si;
00019
00020
00021
00022 /* THIS SUBROUTINE IS A TRANSLATION OF A COMPLEX ANALOGUE OF */
00023 /* THE ALGOL PROCEDURE TRBAK3, NUM. MATH. 11, 181-195(1968) */
00024 /* BY MARTIN, REINSCH, AND WILKINSON. */
00025 /* HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971). */
00026
00027 /* THIS SUBROUTINE FORMS THE EIGENVECTORS OF A COMPLEX HERMITIAN */
00028 /* MATRIX BY BACK TRANSFORMING THOSE OF THE CORRESPONDING */
00029 /* REAL SYMMETRIC TRIDIAGONAL MATRIX DETERMINED BY HTRID3. */
00030
00031 /* ON INPUT */
00032
00033 /* NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL */
00034 /* ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM */
00035 /* DIMENSION STATEMENT. */
00036
00037 /* N IS THE ORDER OF THE MATRIX. */
00038
00039 /* A CONTAINS INFORMATION ABOUT THE UNITARY TRANSFORMATIONS */
00040 /* USED IN THE REDUCTION BY HTRID3. */
00041
00042 /* TAU CONTAINS FURTHER INFORMATION ABOUT THE TRANSFORMATIONS. */
00043
00044 /* M IS THE NUMBER OF EIGENVECTORS TO BE BACK TRANSFORMED. */
00045
00046 /* ZR CONTAINS THE EIGENVECTORS TO BE BACK TRANSFORMED */
00047 /* IN ITS FIRST M COLUMNS. */
00048
00049 /* ON OUTPUT */
00050
00051 /* ZR AND ZI CONTAIN THE REAL AND IMAGINARY PARTS, */
00052 /* RESPECTIVELY, OF THE TRANSFORMED EIGENVECTORS */
00053 /* IN THEIR FIRST M COLUMNS. */
00054
00055 /* NOTE THAT THE LAST COMPONENT OF EACH RETURNED VECTOR */
00056 /* IS REAL AND THAT VECTOR EUCLIDEAN NORMS ARE PRESERVED. */
00057
00058 /* QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW, */
00059 /* MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
00060 */
00061
00062 /* THIS VERSION DATED AUGUST 1983. */
00063
00064 /* ------------------------------------------------------------------
00065 */
00066
00067 /* Parameter adjustments */
00068 tau -= 3;
00069 a_dim1 = *nm;
00070 a_offset = a_dim1 + 1;
00071 a -= a_offset;
00072 zi_dim1 = *nm;
00073 zi_offset = zi_dim1 + 1;
00074 zi -= zi_offset;
00075 zr_dim1 = *nm;
00076 zr_offset = zr_dim1 + 1;
00077 zr -= zr_offset;
00078
00079 /* Function Body */
00080 if (*m == 0) {
00081 goto L200;
00082 }
00083 /* .......... TRANSFORM THE EIGENVECTORS OF THE REAL SYMMETRIC */
00084 /* TRIDIAGONAL MATRIX TO THOSE OF THE HERMITIAN */
00085 /* TRIDIAGONAL MATRIX. .......... */
00086 i__1 = *n;
00087 for (k = 1; k <= i__1; ++k) {
00088
00089 i__2 = *m;
00090 for (j = 1; j <= i__2; ++j) {
00091 zi[k + j * zi_dim1] = -zr[k + j * zr_dim1] * tau[(k << 1) + 2];
00092 zr[k + j * zr_dim1] *= tau[(k << 1) + 1];
00093 /* L50: */
00094 }
00095 }
00096
00097 if (*n == 1) {
00098 goto L200;
00099 }
00100 /* .......... RECOVER AND APPLY THE HOUSEHOLDER MATRICES .......... */
00101 i__2 = *n;
00102 for (i__ = 2; i__ <= i__2; ++i__) {
00103 l = i__ - 1;
00104 h__ = a[i__ + i__ * a_dim1];
00105 if (h__ == 0.) {
00106 goto L140;
00107 }
00108
00109 i__1 = *m;
00110 for (j = 1; j <= i__1; ++j) {
00111 s = 0.;
00112 si = 0.;
00113
00114 i__3 = l;
00115 for (k = 1; k <= i__3; ++k) {
00116 s = s + a[i__ + k * a_dim1] * zr[k + j * zr_dim1] - a[k + i__
00117 * a_dim1] * zi[k + j * zi_dim1];
00118 si = si + a[i__ + k * a_dim1] * zi[k + j * zi_dim1] + a[k +
00119 i__ * a_dim1] * zr[k + j * zr_dim1];
00120 /* L110: */
00121 }
00122 /* .......... DOUBLE DIVISIONS AVOID POSSIBLE UNDERFLOW ......
00123 .... */
00124 s = s / h__ / h__;
00125 si = si / h__ / h__;
00126
00127 i__3 = l;
00128 for (k = 1; k <= i__3; ++k) {
00129 zr[k + j * zr_dim1] = zr[k + j * zr_dim1] - s * a[i__ + k *
00130 a_dim1] - si * a[k + i__ * a_dim1];
00131 zi[k + j * zi_dim1] = zi[k + j * zi_dim1] - si * a[i__ + k *
00132 a_dim1] + s * a[k + i__ * a_dim1];
00133 /* L120: */
00134 }
00135
00136 /* L130: */
00137 }
00138
00139 L140:
00140 ;
00141 }
00142
00143 L200:
00144 return 0;
00145 } /* htrib3_ */
|