Doxygen Source Code Documentation
eis_htribk.c File Reference
#include "f2c.h"Go to the source code of this file.
Functions | |
| int | htribk_ (integer *nm, integer *n, doublereal *ar, doublereal *ai, doublereal *tau, integer *m, doublereal *zr, doublereal *zi) |
Function Documentation
|
||||||||||||||||||||||||||||||||||||
|
Definition at line 8 of file eis_htribk.c. References l. Referenced by ch_().
00011 {
00012 /* System generated locals */
00013 integer ar_dim1, ar_offset, ai_dim1, ai_offset, zr_dim1, zr_offset,
00014 zi_dim1, zi_offset, i__1, i__2, i__3;
00015
00016 /* Local variables */
00017 static doublereal h__;
00018 static integer i__, j, k, l;
00019 static doublereal s, si;
00020
00021
00022
00023 /* THIS SUBROUTINE IS A TRANSLATION OF A COMPLEX ANALOGUE OF */
00024 /* THE ALGOL PROCEDURE TRBAK1, NUM. MATH. 11, 181-195(1968) */
00025 /* BY MARTIN, REINSCH, AND WILKINSON. */
00026 /* HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971). */
00027
00028 /* THIS SUBROUTINE FORMS THE EIGENVECTORS OF A COMPLEX HERMITIAN */
00029 /* MATRIX BY BACK TRANSFORMING THOSE OF THE CORRESPONDING */
00030 /* REAL SYMMETRIC TRIDIAGONAL MATRIX DETERMINED BY HTRIDI. */
00031
00032 /* ON INPUT */
00033
00034 /* NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL */
00035 /* ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM */
00036 /* DIMENSION STATEMENT. */
00037
00038 /* N IS THE ORDER OF THE MATRIX. */
00039
00040 /* AR AND AI CONTAIN INFORMATION ABOUT THE UNITARY TRANS- */
00041 /* FORMATIONS USED IN THE REDUCTION BY HTRIDI IN THEIR */
00042 /* FULL LOWER TRIANGLES EXCEPT FOR THE DIAGONAL OF AR. */
00043
00044 /* TAU CONTAINS FURTHER INFORMATION ABOUT THE TRANSFORMATIONS. */
00045
00046 /* M IS THE NUMBER OF EIGENVECTORS TO BE BACK TRANSFORMED. */
00047
00048 /* ZR CONTAINS THE EIGENVECTORS TO BE BACK TRANSFORMED */
00049 /* IN ITS FIRST M COLUMNS. */
00050
00051 /* ON OUTPUT */
00052
00053 /* ZR AND ZI CONTAIN THE REAL AND IMAGINARY PARTS, */
00054 /* RESPECTIVELY, OF THE TRANSFORMED EIGENVECTORS */
00055 /* IN THEIR FIRST M COLUMNS. */
00056
00057 /* NOTE THAT THE LAST COMPONENT OF EACH RETURNED VECTOR */
00058 /* IS REAL AND THAT VECTOR EUCLIDEAN NORMS ARE PRESERVED. */
00059
00060 /* QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW, */
00061 /* MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
00062 */
00063
00064 /* THIS VERSION DATED AUGUST 1983. */
00065
00066 /* ------------------------------------------------------------------
00067 */
00068
00069 /* Parameter adjustments */
00070 tau -= 3;
00071 ai_dim1 = *nm;
00072 ai_offset = ai_dim1 + 1;
00073 ai -= ai_offset;
00074 ar_dim1 = *nm;
00075 ar_offset = ar_dim1 + 1;
00076 ar -= ar_offset;
00077 zi_dim1 = *nm;
00078 zi_offset = zi_dim1 + 1;
00079 zi -= zi_offset;
00080 zr_dim1 = *nm;
00081 zr_offset = zr_dim1 + 1;
00082 zr -= zr_offset;
00083
00084 /* Function Body */
00085 if (*m == 0) {
00086 goto L200;
00087 }
00088 /* .......... TRANSFORM THE EIGENVECTORS OF THE REAL SYMMETRIC */
00089 /* TRIDIAGONAL MATRIX TO THOSE OF THE HERMITIAN */
00090 /* TRIDIAGONAL MATRIX. .......... */
00091 i__1 = *n;
00092 for (k = 1; k <= i__1; ++k) {
00093
00094 i__2 = *m;
00095 for (j = 1; j <= i__2; ++j) {
00096 zi[k + j * zi_dim1] = -zr[k + j * zr_dim1] * tau[(k << 1) + 2];
00097 zr[k + j * zr_dim1] *= tau[(k << 1) + 1];
00098 /* L50: */
00099 }
00100 }
00101
00102 if (*n == 1) {
00103 goto L200;
00104 }
00105 /* .......... RECOVER AND APPLY THE HOUSEHOLDER MATRICES .......... */
00106 i__2 = *n;
00107 for (i__ = 2; i__ <= i__2; ++i__) {
00108 l = i__ - 1;
00109 h__ = ai[i__ + i__ * ai_dim1];
00110 if (h__ == 0.) {
00111 goto L140;
00112 }
00113
00114 i__1 = *m;
00115 for (j = 1; j <= i__1; ++j) {
00116 s = 0.;
00117 si = 0.;
00118
00119 i__3 = l;
00120 for (k = 1; k <= i__3; ++k) {
00121 s = s + ar[i__ + k * ar_dim1] * zr[k + j * zr_dim1] - ai[i__
00122 + k * ai_dim1] * zi[k + j * zi_dim1];
00123 si = si + ar[i__ + k * ar_dim1] * zi[k + j * zi_dim1] + ai[
00124 i__ + k * ai_dim1] * zr[k + j * zr_dim1];
00125 /* L110: */
00126 }
00127 /* .......... DOUBLE DIVISIONS AVOID POSSIBLE UNDERFLOW ......
00128 .... */
00129 s = s / h__ / h__;
00130 si = si / h__ / h__;
00131
00132 i__3 = l;
00133 for (k = 1; k <= i__3; ++k) {
00134 zr[k + j * zr_dim1] = zr[k + j * zr_dim1] - s * ar[i__ + k *
00135 ar_dim1] - si * ai[i__ + k * ai_dim1];
00136 zi[k + j * zi_dim1] = zi[k + j * zi_dim1] - si * ar[i__ + k *
00137 ar_dim1] + s * ai[i__ + k * ai_dim1];
00138 /* L120: */
00139 }
00140
00141 /* L130: */
00142 }
00143
00144 L140:
00145 ;
00146 }
00147
00148 L200:
00149 return 0;
00150 } /* htribk_ */
|