Doxygen Source Code Documentation
eis_htrid3.c File Reference
#include "f2c.h"Go to the source code of this file.
Functions | |
| int | htrid3_ (integer *nm, integer *n, doublereal *a, doublereal *d__, doublereal *e, doublereal *e2, doublereal *tau) |
Function Documentation
|
||||||||||||||||||||||||||||||||
|
Definition at line 8 of file eis_htrid3.c. References a, abs, l, pythag_(), and scale.
00010 {
00011 /* System generated locals */
00012 integer a_dim1, a_offset, i__1, i__2, i__3;
00013 doublereal d__1, d__2;
00014
00015 /* Builtin functions */
00016 double sqrt(doublereal);
00017
00018 /* Local variables */
00019 static doublereal f, g, h__;
00020 static integer i__, j, k, l;
00021 static doublereal scale, fi, gi, hh;
00022 static integer ii;
00023 static doublereal si;
00024 extern doublereal pythag_(doublereal *, doublereal *);
00025 static integer jm1, jp1;
00026
00027
00028
00029 /* THIS SUBROUTINE IS A TRANSLATION OF A COMPLEX ANALOGUE OF */
00030 /* THE ALGOL PROCEDURE TRED3, NUM. MATH. 11, 181-195(1968) */
00031 /* BY MARTIN, REINSCH, AND WILKINSON. */
00032 /* HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971). */
00033
00034 /* THIS SUBROUTINE REDUCES A COMPLEX HERMITIAN MATRIX, STORED AS */
00035 /* A SINGLE SQUARE ARRAY, TO A REAL SYMMETRIC TRIDIAGONAL MATRIX */
00036 /* USING UNITARY SIMILARITY TRANSFORMATIONS. */
00037
00038 /* ON INPUT */
00039
00040 /* NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL */
00041 /* ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM */
00042 /* DIMENSION STATEMENT. */
00043
00044 /* N IS THE ORDER OF THE MATRIX. */
00045
00046 /* A CONTAINS THE LOWER TRIANGLE OF THE COMPLEX HERMITIAN INPUT */
00047 /* MATRIX. THE REAL PARTS OF THE MATRIX ELEMENTS ARE STORED */
00048 /* IN THE FULL LOWER TRIANGLE OF A, AND THE IMAGINARY PARTS */
00049 /* ARE STORED IN THE TRANSPOSED POSITIONS OF THE STRICT UPPER */
00050 /* TRIANGLE OF A. NO STORAGE IS REQUIRED FOR THE ZERO */
00051 /* IMAGINARY PARTS OF THE DIAGONAL ELEMENTS. */
00052
00053 /* ON OUTPUT */
00054
00055 /* A CONTAINS INFORMATION ABOUT THE UNITARY TRANSFORMATIONS */
00056 /* USED IN THE REDUCTION. */
00057
00058 /* D CONTAINS THE DIAGONAL ELEMENTS OF THE THE TRIDIAGONAL MATRIX.
00059 */
00060
00061 /* E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE TRIDIAGONAL */
00062 /* MATRIX IN ITS LAST N-1 POSITIONS. E(1) IS SET TO ZERO. */
00063
00064 /* E2 CONTAINS THE SQUARES OF THE CORRESPONDING ELEMENTS OF E. */
00065 /* E2 MAY COINCIDE WITH E IF THE SQUARES ARE NOT NEEDED. */
00066
00067 /* TAU CONTAINS FURTHER INFORMATION ABOUT THE TRANSFORMATIONS. */
00068
00069 /* CALLS PYTHAG FOR DSQRT(A*A + B*B) . */
00070
00071 /* QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW, */
00072 /* MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
00073 */
00074
00075 /* THIS VERSION DATED AUGUST 1983. */
00076
00077 /* ------------------------------------------------------------------
00078 */
00079
00080 /* Parameter adjustments */
00081 tau -= 3;
00082 --e2;
00083 --e;
00084 --d__;
00085 a_dim1 = *nm;
00086 a_offset = a_dim1 + 1;
00087 a -= a_offset;
00088
00089 /* Function Body */
00090 tau[(*n << 1) + 1] = 1.;
00091 tau[(*n << 1) + 2] = 0.;
00092 /* .......... FOR I=N STEP -1 UNTIL 1 DO -- .......... */
00093 i__1 = *n;
00094 for (ii = 1; ii <= i__1; ++ii) {
00095 i__ = *n + 1 - ii;
00096 l = i__ - 1;
00097 h__ = 0.;
00098 scale = 0.;
00099 if (l < 1) {
00100 goto L130;
00101 }
00102 /* .......... SCALE ROW (ALGOL TOL THEN NOT NEEDED) .......... */
00103 i__2 = l;
00104 for (k = 1; k <= i__2; ++k) {
00105 /* L120: */
00106 scale = scale + (d__1 = a[i__ + k * a_dim1], abs(d__1)) + (d__2 =
00107 a[k + i__ * a_dim1], abs(d__2));
00108 }
00109
00110 if (scale != 0.) {
00111 goto L140;
00112 }
00113 tau[(l << 1) + 1] = 1.;
00114 tau[(l << 1) + 2] = 0.;
00115 L130:
00116 e[i__] = 0.;
00117 e2[i__] = 0.;
00118 goto L290;
00119
00120 L140:
00121 i__2 = l;
00122 for (k = 1; k <= i__2; ++k) {
00123 a[i__ + k * a_dim1] /= scale;
00124 a[k + i__ * a_dim1] /= scale;
00125 h__ = h__ + a[i__ + k * a_dim1] * a[i__ + k * a_dim1] + a[k + i__
00126 * a_dim1] * a[k + i__ * a_dim1];
00127 /* L150: */
00128 }
00129
00130 e2[i__] = scale * scale * h__;
00131 g = sqrt(h__);
00132 e[i__] = scale * g;
00133 f = pythag_(&a[i__ + l * a_dim1], &a[l + i__ * a_dim1]);
00134 /* .......... FORM NEXT DIAGONAL ELEMENT OF MATRIX T .......... */
00135 if (f == 0.) {
00136 goto L160;
00137 }
00138 tau[(l << 1) + 1] = (a[l + i__ * a_dim1] * tau[(i__ << 1) + 2] - a[
00139 i__ + l * a_dim1] * tau[(i__ << 1) + 1]) / f;
00140 si = (a[i__ + l * a_dim1] * tau[(i__ << 1) + 2] + a[l + i__ * a_dim1]
00141 * tau[(i__ << 1) + 1]) / f;
00142 h__ += f * g;
00143 g = g / f + 1.;
00144 a[i__ + l * a_dim1] = g * a[i__ + l * a_dim1];
00145 a[l + i__ * a_dim1] = g * a[l + i__ * a_dim1];
00146 if (l == 1) {
00147 goto L270;
00148 }
00149 goto L170;
00150 L160:
00151 tau[(l << 1) + 1] = -tau[(i__ << 1) + 1];
00152 si = tau[(i__ << 1) + 2];
00153 a[i__ + l * a_dim1] = g;
00154 L170:
00155 f = 0.;
00156
00157 i__2 = l;
00158 for (j = 1; j <= i__2; ++j) {
00159 g = 0.;
00160 gi = 0.;
00161 if (j == 1) {
00162 goto L190;
00163 }
00164 jm1 = j - 1;
00165 /* .......... FORM ELEMENT OF A*U .......... */
00166 i__3 = jm1;
00167 for (k = 1; k <= i__3; ++k) {
00168 g = g + a[j + k * a_dim1] * a[i__ + k * a_dim1] + a[k + j *
00169 a_dim1] * a[k + i__ * a_dim1];
00170 gi = gi - a[j + k * a_dim1] * a[k + i__ * a_dim1] + a[k + j *
00171 a_dim1] * a[i__ + k * a_dim1];
00172 /* L180: */
00173 }
00174
00175 L190:
00176 g += a[j + j * a_dim1] * a[i__ + j * a_dim1];
00177 gi -= a[j + j * a_dim1] * a[j + i__ * a_dim1];
00178 jp1 = j + 1;
00179 if (l < jp1) {
00180 goto L220;
00181 }
00182
00183 i__3 = l;
00184 for (k = jp1; k <= i__3; ++k) {
00185 g = g + a[k + j * a_dim1] * a[i__ + k * a_dim1] - a[j + k *
00186 a_dim1] * a[k + i__ * a_dim1];
00187 gi = gi - a[k + j * a_dim1] * a[k + i__ * a_dim1] - a[j + k *
00188 a_dim1] * a[i__ + k * a_dim1];
00189 /* L200: */
00190 }
00191 /* .......... FORM ELEMENT OF P .......... */
00192 L220:
00193 e[j] = g / h__;
00194 tau[(j << 1) + 2] = gi / h__;
00195 f = f + e[j] * a[i__ + j * a_dim1] - tau[(j << 1) + 2] * a[j +
00196 i__ * a_dim1];
00197 /* L240: */
00198 }
00199
00200 hh = f / (h__ + h__);
00201 /* .......... FORM REDUCED A .......... */
00202 i__2 = l;
00203 for (j = 1; j <= i__2; ++j) {
00204 f = a[i__ + j * a_dim1];
00205 g = e[j] - hh * f;
00206 e[j] = g;
00207 fi = -a[j + i__ * a_dim1];
00208 gi = tau[(j << 1) + 2] - hh * fi;
00209 tau[(j << 1) + 2] = -gi;
00210 a[j + j * a_dim1] -= (f * g + fi * gi) * 2.;
00211 if (j == 1) {
00212 goto L260;
00213 }
00214 jm1 = j - 1;
00215
00216 i__3 = jm1;
00217 for (k = 1; k <= i__3; ++k) {
00218 a[j + k * a_dim1] = a[j + k * a_dim1] - f * e[k] - g * a[i__
00219 + k * a_dim1] + fi * tau[(k << 1) + 2] + gi * a[k +
00220 i__ * a_dim1];
00221 a[k + j * a_dim1] = a[k + j * a_dim1] - f * tau[(k << 1) + 2]
00222 - g * a[k + i__ * a_dim1] - fi * e[k] - gi * a[i__ +
00223 k * a_dim1];
00224 /* L250: */
00225 }
00226
00227 L260:
00228 ;
00229 }
00230
00231 L270:
00232 i__2 = l;
00233 for (k = 1; k <= i__2; ++k) {
00234 a[i__ + k * a_dim1] = scale * a[i__ + k * a_dim1];
00235 a[k + i__ * a_dim1] = scale * a[k + i__ * a_dim1];
00236 /* L280: */
00237 }
00238
00239 tau[(l << 1) + 2] = -si;
00240 L290:
00241 d__[i__] = a[i__ + i__ * a_dim1];
00242 a[i__ + i__ * a_dim1] = scale * sqrt(h__);
00243 /* L300: */
00244 }
00245
00246 return 0;
00247 } /* htrid3_ */
|