Doxygen Source Code Documentation
eis_htridi.c File Reference
#include "f2c.h"Go to the source code of this file.
Functions | |
| int | htridi_ (integer *nm, integer *n, doublereal *ar, doublereal *ai, doublereal *d__, doublereal *e, doublereal *e2, doublereal *tau) |
Function Documentation
|
||||||||||||||||||||||||||||||||||||
|
Definition at line 8 of file eis_htridi.c. References abs, l, pythag_(), and scale. Referenced by ch_().
00011 {
00012 /* System generated locals */
00013 integer ar_dim1, ar_offset, ai_dim1, ai_offset, i__1, i__2, i__3;
00014 doublereal d__1, d__2;
00015
00016 /* Builtin functions */
00017 double sqrt(doublereal);
00018
00019 /* Local variables */
00020 static doublereal f, g, h__;
00021 static integer i__, j, k, l;
00022 static doublereal scale, fi, gi, hh;
00023 static integer ii;
00024 static doublereal si;
00025 extern doublereal pythag_(doublereal *, doublereal *);
00026 static integer jp1;
00027
00028
00029
00030 /* THIS SUBROUTINE IS A TRANSLATION OF A COMPLEX ANALOGUE OF */
00031 /* THE ALGOL PROCEDURE TRED1, NUM. MATH. 11, 181-195(1968) */
00032 /* BY MARTIN, REINSCH, AND WILKINSON. */
00033 /* HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971). */
00034
00035 /* THIS SUBROUTINE REDUCES A COMPLEX HERMITIAN MATRIX */
00036 /* TO A REAL SYMMETRIC TRIDIAGONAL MATRIX USING */
00037 /* UNITARY SIMILARITY TRANSFORMATIONS. */
00038
00039 /* ON INPUT */
00040
00041 /* NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL */
00042 /* ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM */
00043 /* DIMENSION STATEMENT. */
00044
00045 /* N IS THE ORDER OF THE MATRIX. */
00046
00047 /* AR AND AI CONTAIN THE REAL AND IMAGINARY PARTS, */
00048 /* RESPECTIVELY, OF THE COMPLEX HERMITIAN INPUT MATRIX. */
00049 /* ONLY THE LOWER TRIANGLE OF THE MATRIX NEED BE SUPPLIED. */
00050
00051 /* ON OUTPUT */
00052
00053 /* AR AND AI CONTAIN INFORMATION ABOUT THE UNITARY TRANS- */
00054 /* FORMATIONS USED IN THE REDUCTION IN THEIR FULL LOWER */
00055 /* TRIANGLES. THEIR STRICT UPPER TRIANGLES AND THE */
00056 /* DIAGONAL OF AR ARE UNALTERED. */
00057
00058 /* D CONTAINS THE DIAGONAL ELEMENTS OF THE THE TRIDIAGONAL MATRIX.
00059 */
00060
00061 /* E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE TRIDIAGONAL */
00062 /* MATRIX IN ITS LAST N-1 POSITIONS. E(1) IS SET TO ZERO. */
00063
00064 /* E2 CONTAINS THE SQUARES OF THE CORRESPONDING ELEMENTS OF E. */
00065 /* E2 MAY COINCIDE WITH E IF THE SQUARES ARE NOT NEEDED. */
00066
00067 /* TAU CONTAINS FURTHER INFORMATION ABOUT THE TRANSFORMATIONS. */
00068
00069 /* CALLS PYTHAG FOR DSQRT(A*A + B*B) . */
00070
00071 /* QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW, */
00072 /* MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
00073 */
00074
00075 /* THIS VERSION DATED AUGUST 1983. */
00076
00077 /* ------------------------------------------------------------------
00078 */
00079
00080 /* Parameter adjustments */
00081 tau -= 3;
00082 --e2;
00083 --e;
00084 --d__;
00085 ai_dim1 = *nm;
00086 ai_offset = ai_dim1 + 1;
00087 ai -= ai_offset;
00088 ar_dim1 = *nm;
00089 ar_offset = ar_dim1 + 1;
00090 ar -= ar_offset;
00091
00092 /* Function Body */
00093 tau[(*n << 1) + 1] = 1.;
00094 tau[(*n << 1) + 2] = 0.;
00095
00096 i__1 = *n;
00097 for (i__ = 1; i__ <= i__1; ++i__) {
00098 /* L100: */
00099 d__[i__] = ar[i__ + i__ * ar_dim1];
00100 }
00101 /* .......... FOR I=N STEP -1 UNTIL 1 DO -- .......... */
00102 i__1 = *n;
00103 for (ii = 1; ii <= i__1; ++ii) {
00104 i__ = *n + 1 - ii;
00105 l = i__ - 1;
00106 h__ = 0.;
00107 scale = 0.;
00108 if (l < 1) {
00109 goto L130;
00110 }
00111 /* .......... SCALE ROW (ALGOL TOL THEN NOT NEEDED) .......... */
00112 i__2 = l;
00113 for (k = 1; k <= i__2; ++k) {
00114 /* L120: */
00115 scale = scale + (d__1 = ar[i__ + k * ar_dim1], abs(d__1)) + (d__2
00116 = ai[i__ + k * ai_dim1], abs(d__2));
00117 }
00118
00119 if (scale != 0.) {
00120 goto L140;
00121 }
00122 tau[(l << 1) + 1] = 1.;
00123 tau[(l << 1) + 2] = 0.;
00124 L130:
00125 e[i__] = 0.;
00126 e2[i__] = 0.;
00127 goto L290;
00128
00129 L140:
00130 i__2 = l;
00131 for (k = 1; k <= i__2; ++k) {
00132 ar[i__ + k * ar_dim1] /= scale;
00133 ai[i__ + k * ai_dim1] /= scale;
00134 h__ = h__ + ar[i__ + k * ar_dim1] * ar[i__ + k * ar_dim1] + ai[
00135 i__ + k * ai_dim1] * ai[i__ + k * ai_dim1];
00136 /* L150: */
00137 }
00138
00139 e2[i__] = scale * scale * h__;
00140 g = sqrt(h__);
00141 e[i__] = scale * g;
00142 f = pythag_(&ar[i__ + l * ar_dim1], &ai[i__ + l * ai_dim1]);
00143 /* .......... FORM NEXT DIAGONAL ELEMENT OF MATRIX T .......... */
00144 if (f == 0.) {
00145 goto L160;
00146 }
00147 tau[(l << 1) + 1] = (ai[i__ + l * ai_dim1] * tau[(i__ << 1) + 2] - ar[
00148 i__ + l * ar_dim1] * tau[(i__ << 1) + 1]) / f;
00149 si = (ar[i__ + l * ar_dim1] * tau[(i__ << 1) + 2] + ai[i__ + l *
00150 ai_dim1] * tau[(i__ << 1) + 1]) / f;
00151 h__ += f * g;
00152 g = g / f + 1.;
00153 ar[i__ + l * ar_dim1] = g * ar[i__ + l * ar_dim1];
00154 ai[i__ + l * ai_dim1] = g * ai[i__ + l * ai_dim1];
00155 if (l == 1) {
00156 goto L270;
00157 }
00158 goto L170;
00159 L160:
00160 tau[(l << 1) + 1] = -tau[(i__ << 1) + 1];
00161 si = tau[(i__ << 1) + 2];
00162 ar[i__ + l * ar_dim1] = g;
00163 L170:
00164 f = 0.;
00165
00166 i__2 = l;
00167 for (j = 1; j <= i__2; ++j) {
00168 g = 0.;
00169 gi = 0.;
00170 /* .......... FORM ELEMENT OF A*U .......... */
00171 i__3 = j;
00172 for (k = 1; k <= i__3; ++k) {
00173 g = g + ar[j + k * ar_dim1] * ar[i__ + k * ar_dim1] + ai[j +
00174 k * ai_dim1] * ai[i__ + k * ai_dim1];
00175 gi = gi - ar[j + k * ar_dim1] * ai[i__ + k * ai_dim1] + ai[j
00176 + k * ai_dim1] * ar[i__ + k * ar_dim1];
00177 /* L180: */
00178 }
00179
00180 jp1 = j + 1;
00181 if (l < jp1) {
00182 goto L220;
00183 }
00184
00185 i__3 = l;
00186 for (k = jp1; k <= i__3; ++k) {
00187 g = g + ar[k + j * ar_dim1] * ar[i__ + k * ar_dim1] - ai[k +
00188 j * ai_dim1] * ai[i__ + k * ai_dim1];
00189 gi = gi - ar[k + j * ar_dim1] * ai[i__ + k * ai_dim1] - ai[k
00190 + j * ai_dim1] * ar[i__ + k * ar_dim1];
00191 /* L200: */
00192 }
00193 /* .......... FORM ELEMENT OF P .......... */
00194 L220:
00195 e[j] = g / h__;
00196 tau[(j << 1) + 2] = gi / h__;
00197 f = f + e[j] * ar[i__ + j * ar_dim1] - tau[(j << 1) + 2] * ai[i__
00198 + j * ai_dim1];
00199 /* L240: */
00200 }
00201
00202 hh = f / (h__ + h__);
00203 /* .......... FORM REDUCED A .......... */
00204 i__2 = l;
00205 for (j = 1; j <= i__2; ++j) {
00206 f = ar[i__ + j * ar_dim1];
00207 g = e[j] - hh * f;
00208 e[j] = g;
00209 fi = -ai[i__ + j * ai_dim1];
00210 gi = tau[(j << 1) + 2] - hh * fi;
00211 tau[(j << 1) + 2] = -gi;
00212
00213 i__3 = j;
00214 for (k = 1; k <= i__3; ++k) {
00215 ar[j + k * ar_dim1] = ar[j + k * ar_dim1] - f * e[k] - g * ar[
00216 i__ + k * ar_dim1] + fi * tau[(k << 1) + 2] + gi * ai[
00217 i__ + k * ai_dim1];
00218 ai[j + k * ai_dim1] = ai[j + k * ai_dim1] - f * tau[(k << 1)
00219 + 2] - g * ai[i__ + k * ai_dim1] - fi * e[k] - gi *
00220 ar[i__ + k * ar_dim1];
00221 /* L260: */
00222 }
00223 }
00224
00225 L270:
00226 i__3 = l;
00227 for (k = 1; k <= i__3; ++k) {
00228 ar[i__ + k * ar_dim1] = scale * ar[i__ + k * ar_dim1];
00229 ai[i__ + k * ai_dim1] = scale * ai[i__ + k * ai_dim1];
00230 /* L280: */
00231 }
00232
00233 tau[(l << 1) + 2] = -si;
00234 L290:
00235 hh = d__[i__];
00236 d__[i__] = ar[i__ + i__ * ar_dim1];
00237 ar[i__ + i__ * ar_dim1] = hh;
00238 ai[i__ + i__ * ai_dim1] = scale * sqrt(h__);
00239 /* L300: */
00240 }
00241
00242 return 0;
00243 } /* htridi_ */
|