Doxygen Source Code Documentation
eis_imtql2.c File Reference
#include "f2c.h"
Go to the source code of this file.
Functions | |
int | imtql2_ (integer *nm, integer *n, doublereal *d__, doublereal *e, doublereal *z__, integer *ierr) |
Variables | |
doublereal | c_b9 = 1. |
Function Documentation
|
Definition at line 12 of file eis_imtql2.c. References abs, c_b9, d_sign(), l, p, and pythag_(). Referenced by rst_(), and rt_().
00014 { 00015 /* System generated locals */ 00016 integer z_dim1, z_offset, i__1, i__2, i__3; 00017 doublereal d__1, d__2; 00018 00019 /* Builtin functions */ 00020 double d_sign(doublereal *, doublereal *); 00021 00022 /* Local variables */ 00023 static doublereal b, c__, f, g; 00024 static integer i__, j, k, l, m; 00025 static doublereal p, r__, s; 00026 static integer ii; 00027 extern doublereal pythag_(doublereal *, doublereal *); 00028 static integer mml; 00029 static doublereal tst1, tst2; 00030 00031 00032 00033 /* THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE IMTQL2, */ 00034 /* NUM. MATH. 12, 377-383(1968) BY MARTIN AND WILKINSON, */ 00035 /* AS MODIFIED IN NUM. MATH. 15, 450(1970) BY DUBRULLE. */ 00036 /* HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 241-248(1971). */ 00037 00038 /* THIS SUBROUTINE FINDS THE EIGENVALUES AND EIGENVECTORS */ 00039 /* OF A SYMMETRIC TRIDIAGONAL MATRIX BY THE IMPLICIT QL METHOD. */ 00040 /* THE EIGENVECTORS OF A FULL SYMMETRIC MATRIX CAN ALSO */ 00041 /* BE FOUND IF TRED2 HAS BEEN USED TO REDUCE THIS */ 00042 /* FULL MATRIX TO TRIDIAGONAL FORM. */ 00043 00044 /* ON INPUT */ 00045 00046 /* NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL */ 00047 /* ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM */ 00048 /* DIMENSION STATEMENT. */ 00049 00050 /* N IS THE ORDER OF THE MATRIX. */ 00051 00052 /* D CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT MATRIX. */ 00053 00054 /* E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE INPUT MATRIX */ 00055 /* IN ITS LAST N-1 POSITIONS. E(1) IS ARBITRARY. */ 00056 00057 /* Z CONTAINS THE TRANSFORMATION MATRIX PRODUCED IN THE */ 00058 /* REDUCTION BY TRED2, IF PERFORMED. IF THE EIGENVECTORS */ 00059 /* OF THE TRIDIAGONAL MATRIX ARE DESIRED, Z MUST CONTAIN */ 00060 /* THE IDENTITY MATRIX. */ 00061 00062 /* ON OUTPUT */ 00063 00064 /* D CONTAINS THE EIGENVALUES IN ASCENDING ORDER. IF AN */ 00065 /* ERROR EXIT IS MADE, THE EIGENVALUES ARE CORRECT BUT */ 00066 /* UNORDERED FOR INDICES 1,2,...,IERR-1. */ 00067 00068 /* E HAS BEEN DESTROYED. */ 00069 00070 /* Z CONTAINS ORTHONORMAL EIGENVECTORS OF THE SYMMETRIC */ 00071 /* TRIDIAGONAL (OR FULL) MATRIX. IF AN ERROR EXIT IS MADE, */ 00072 /* Z CONTAINS THE EIGENVECTORS ASSOCIATED WITH THE STORED */ 00073 /* EIGENVALUES. */ 00074 00075 /* IERR IS SET TO */ 00076 /* ZERO FOR NORMAL RETURN, */ 00077 /* J IF THE J-TH EIGENVALUE HAS NOT BEEN */ 00078 /* DETERMINED AFTER 30 ITERATIONS. */ 00079 00080 /* CALLS PYTHAG FOR DSQRT(A*A + B*B) . */ 00081 00082 /* QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW, */ 00083 /* MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY 00084 */ 00085 00086 /* THIS VERSION DATED AUGUST 1983. */ 00087 00088 /* ------------------------------------------------------------------ 00089 */ 00090 00091 /* Parameter adjustments */ 00092 z_dim1 = *nm; 00093 z_offset = z_dim1 + 1; 00094 z__ -= z_offset; 00095 --e; 00096 --d__; 00097 00098 /* Function Body */ 00099 *ierr = 0; 00100 if (*n == 1) { 00101 goto L1001; 00102 } 00103 00104 i__1 = *n; 00105 for (i__ = 2; i__ <= i__1; ++i__) { 00106 /* L100: */ 00107 e[i__ - 1] = e[i__]; 00108 } 00109 00110 e[*n] = 0.; 00111 00112 i__1 = *n; 00113 for (l = 1; l <= i__1; ++l) { 00114 j = 0; 00115 /* .......... LOOK FOR SMALL SUB-DIAGONAL ELEMENT .......... */ 00116 L105: 00117 i__2 = *n; 00118 for (m = l; m <= i__2; ++m) { 00119 if (m == *n) { 00120 goto L120; 00121 } 00122 tst1 = (d__1 = d__[m], abs(d__1)) + (d__2 = d__[m + 1], abs(d__2)) 00123 ; 00124 tst2 = tst1 + (d__1 = e[m], abs(d__1)); 00125 if (tst2 == tst1) { 00126 goto L120; 00127 } 00128 /* L110: */ 00129 } 00130 00131 L120: 00132 p = d__[l]; 00133 if (m == l) { 00134 goto L240; 00135 } 00136 if (j == 30) { 00137 goto L1000; 00138 } 00139 ++j; 00140 /* .......... FORM SHIFT .......... */ 00141 g = (d__[l + 1] - p) / (e[l] * 2.); 00142 r__ = pythag_(&g, &c_b9); 00143 g = d__[m] - p + e[l] / (g + d_sign(&r__, &g)); 00144 s = 1.; 00145 c__ = 1.; 00146 p = 0.; 00147 mml = m - l; 00148 /* .......... FOR I=M-1 STEP -1 UNTIL L DO -- .......... */ 00149 i__2 = mml; 00150 for (ii = 1; ii <= i__2; ++ii) { 00151 i__ = m - ii; 00152 f = s * e[i__]; 00153 b = c__ * e[i__]; 00154 r__ = pythag_(&f, &g); 00155 e[i__ + 1] = r__; 00156 if (r__ == 0.) { 00157 goto L210; 00158 } 00159 s = f / r__; 00160 c__ = g / r__; 00161 g = d__[i__ + 1] - p; 00162 r__ = (d__[i__] - g) * s + c__ * 2. * b; 00163 p = s * r__; 00164 d__[i__ + 1] = g + p; 00165 g = c__ * r__ - b; 00166 /* .......... FORM VECTOR .......... */ 00167 i__3 = *n; 00168 for (k = 1; k <= i__3; ++k) { 00169 f = z__[k + (i__ + 1) * z_dim1]; 00170 z__[k + (i__ + 1) * z_dim1] = s * z__[k + i__ * z_dim1] + c__ 00171 * f; 00172 z__[k + i__ * z_dim1] = c__ * z__[k + i__ * z_dim1] - s * f; 00173 /* L180: */ 00174 } 00175 00176 /* L200: */ 00177 } 00178 00179 d__[l] -= p; 00180 e[l] = g; 00181 e[m] = 0.; 00182 goto L105; 00183 /* .......... RECOVER FROM UNDERFLOW .......... */ 00184 L210: 00185 d__[i__ + 1] -= p; 00186 e[m] = 0.; 00187 goto L105; 00188 L240: 00189 ; 00190 } 00191 /* .......... ORDER EIGENVALUES AND EIGENVECTORS .......... */ 00192 i__1 = *n; 00193 for (ii = 2; ii <= i__1; ++ii) { 00194 i__ = ii - 1; 00195 k = i__; 00196 p = d__[i__]; 00197 00198 i__2 = *n; 00199 for (j = ii; j <= i__2; ++j) { 00200 if (d__[j] >= p) { 00201 goto L260; 00202 } 00203 k = j; 00204 p = d__[j]; 00205 L260: 00206 ; 00207 } 00208 00209 if (k == i__) { 00210 goto L300; 00211 } 00212 d__[k] = d__[i__]; 00213 d__[i__] = p; 00214 00215 i__2 = *n; 00216 for (j = 1; j <= i__2; ++j) { 00217 p = z__[j + i__ * z_dim1]; 00218 z__[j + i__ * z_dim1] = z__[j + k * z_dim1]; 00219 z__[j + k * z_dim1] = p; 00220 /* L280: */ 00221 } 00222 00223 L300: 00224 ; 00225 } 00226 00227 goto L1001; 00228 /* .......... SET ERROR -- NO CONVERGENCE TO AN */ 00229 /* EIGENVALUE AFTER 30 ITERATIONS .......... */ 00230 L1000: 00231 *ierr = l; 00232 L1001: 00233 return 0; 00234 } /* imtql2_ */ |
Variable Documentation
|
Definition at line 10 of file eis_imtql2.c. Referenced by imtql2_(). |