Doxygen Source Code Documentation
eis_imtql2.c File Reference
#include "f2c.h"Go to the source code of this file.
Functions | |
| int | imtql2_ (integer *nm, integer *n, doublereal *d__, doublereal *e, doublereal *z__, integer *ierr) |
Variables | |
| doublereal | c_b9 = 1. |
Function Documentation
|
||||||||||||||||||||||||||||
|
Definition at line 12 of file eis_imtql2.c. References abs, c_b9, d_sign(), l, p, and pythag_(). Referenced by rst_(), and rt_().
00014 {
00015 /* System generated locals */
00016 integer z_dim1, z_offset, i__1, i__2, i__3;
00017 doublereal d__1, d__2;
00018
00019 /* Builtin functions */
00020 double d_sign(doublereal *, doublereal *);
00021
00022 /* Local variables */
00023 static doublereal b, c__, f, g;
00024 static integer i__, j, k, l, m;
00025 static doublereal p, r__, s;
00026 static integer ii;
00027 extern doublereal pythag_(doublereal *, doublereal *);
00028 static integer mml;
00029 static doublereal tst1, tst2;
00030
00031
00032
00033 /* THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE IMTQL2, */
00034 /* NUM. MATH. 12, 377-383(1968) BY MARTIN AND WILKINSON, */
00035 /* AS MODIFIED IN NUM. MATH. 15, 450(1970) BY DUBRULLE. */
00036 /* HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 241-248(1971). */
00037
00038 /* THIS SUBROUTINE FINDS THE EIGENVALUES AND EIGENVECTORS */
00039 /* OF A SYMMETRIC TRIDIAGONAL MATRIX BY THE IMPLICIT QL METHOD. */
00040 /* THE EIGENVECTORS OF A FULL SYMMETRIC MATRIX CAN ALSO */
00041 /* BE FOUND IF TRED2 HAS BEEN USED TO REDUCE THIS */
00042 /* FULL MATRIX TO TRIDIAGONAL FORM. */
00043
00044 /* ON INPUT */
00045
00046 /* NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL */
00047 /* ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM */
00048 /* DIMENSION STATEMENT. */
00049
00050 /* N IS THE ORDER OF THE MATRIX. */
00051
00052 /* D CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT MATRIX. */
00053
00054 /* E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE INPUT MATRIX */
00055 /* IN ITS LAST N-1 POSITIONS. E(1) IS ARBITRARY. */
00056
00057 /* Z CONTAINS THE TRANSFORMATION MATRIX PRODUCED IN THE */
00058 /* REDUCTION BY TRED2, IF PERFORMED. IF THE EIGENVECTORS */
00059 /* OF THE TRIDIAGONAL MATRIX ARE DESIRED, Z MUST CONTAIN */
00060 /* THE IDENTITY MATRIX. */
00061
00062 /* ON OUTPUT */
00063
00064 /* D CONTAINS THE EIGENVALUES IN ASCENDING ORDER. IF AN */
00065 /* ERROR EXIT IS MADE, THE EIGENVALUES ARE CORRECT BUT */
00066 /* UNORDERED FOR INDICES 1,2,...,IERR-1. */
00067
00068 /* E HAS BEEN DESTROYED. */
00069
00070 /* Z CONTAINS ORTHONORMAL EIGENVECTORS OF THE SYMMETRIC */
00071 /* TRIDIAGONAL (OR FULL) MATRIX. IF AN ERROR EXIT IS MADE, */
00072 /* Z CONTAINS THE EIGENVECTORS ASSOCIATED WITH THE STORED */
00073 /* EIGENVALUES. */
00074
00075 /* IERR IS SET TO */
00076 /* ZERO FOR NORMAL RETURN, */
00077 /* J IF THE J-TH EIGENVALUE HAS NOT BEEN */
00078 /* DETERMINED AFTER 30 ITERATIONS. */
00079
00080 /* CALLS PYTHAG FOR DSQRT(A*A + B*B) . */
00081
00082 /* QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW, */
00083 /* MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
00084 */
00085
00086 /* THIS VERSION DATED AUGUST 1983. */
00087
00088 /* ------------------------------------------------------------------
00089 */
00090
00091 /* Parameter adjustments */
00092 z_dim1 = *nm;
00093 z_offset = z_dim1 + 1;
00094 z__ -= z_offset;
00095 --e;
00096 --d__;
00097
00098 /* Function Body */
00099 *ierr = 0;
00100 if (*n == 1) {
00101 goto L1001;
00102 }
00103
00104 i__1 = *n;
00105 for (i__ = 2; i__ <= i__1; ++i__) {
00106 /* L100: */
00107 e[i__ - 1] = e[i__];
00108 }
00109
00110 e[*n] = 0.;
00111
00112 i__1 = *n;
00113 for (l = 1; l <= i__1; ++l) {
00114 j = 0;
00115 /* .......... LOOK FOR SMALL SUB-DIAGONAL ELEMENT .......... */
00116 L105:
00117 i__2 = *n;
00118 for (m = l; m <= i__2; ++m) {
00119 if (m == *n) {
00120 goto L120;
00121 }
00122 tst1 = (d__1 = d__[m], abs(d__1)) + (d__2 = d__[m + 1], abs(d__2))
00123 ;
00124 tst2 = tst1 + (d__1 = e[m], abs(d__1));
00125 if (tst2 == tst1) {
00126 goto L120;
00127 }
00128 /* L110: */
00129 }
00130
00131 L120:
00132 p = d__[l];
00133 if (m == l) {
00134 goto L240;
00135 }
00136 if (j == 30) {
00137 goto L1000;
00138 }
00139 ++j;
00140 /* .......... FORM SHIFT .......... */
00141 g = (d__[l + 1] - p) / (e[l] * 2.);
00142 r__ = pythag_(&g, &c_b9);
00143 g = d__[m] - p + e[l] / (g + d_sign(&r__, &g));
00144 s = 1.;
00145 c__ = 1.;
00146 p = 0.;
00147 mml = m - l;
00148 /* .......... FOR I=M-1 STEP -1 UNTIL L DO -- .......... */
00149 i__2 = mml;
00150 for (ii = 1; ii <= i__2; ++ii) {
00151 i__ = m - ii;
00152 f = s * e[i__];
00153 b = c__ * e[i__];
00154 r__ = pythag_(&f, &g);
00155 e[i__ + 1] = r__;
00156 if (r__ == 0.) {
00157 goto L210;
00158 }
00159 s = f / r__;
00160 c__ = g / r__;
00161 g = d__[i__ + 1] - p;
00162 r__ = (d__[i__] - g) * s + c__ * 2. * b;
00163 p = s * r__;
00164 d__[i__ + 1] = g + p;
00165 g = c__ * r__ - b;
00166 /* .......... FORM VECTOR .......... */
00167 i__3 = *n;
00168 for (k = 1; k <= i__3; ++k) {
00169 f = z__[k + (i__ + 1) * z_dim1];
00170 z__[k + (i__ + 1) * z_dim1] = s * z__[k + i__ * z_dim1] + c__
00171 * f;
00172 z__[k + i__ * z_dim1] = c__ * z__[k + i__ * z_dim1] - s * f;
00173 /* L180: */
00174 }
00175
00176 /* L200: */
00177 }
00178
00179 d__[l] -= p;
00180 e[l] = g;
00181 e[m] = 0.;
00182 goto L105;
00183 /* .......... RECOVER FROM UNDERFLOW .......... */
00184 L210:
00185 d__[i__ + 1] -= p;
00186 e[m] = 0.;
00187 goto L105;
00188 L240:
00189 ;
00190 }
00191 /* .......... ORDER EIGENVALUES AND EIGENVECTORS .......... */
00192 i__1 = *n;
00193 for (ii = 2; ii <= i__1; ++ii) {
00194 i__ = ii - 1;
00195 k = i__;
00196 p = d__[i__];
00197
00198 i__2 = *n;
00199 for (j = ii; j <= i__2; ++j) {
00200 if (d__[j] >= p) {
00201 goto L260;
00202 }
00203 k = j;
00204 p = d__[j];
00205 L260:
00206 ;
00207 }
00208
00209 if (k == i__) {
00210 goto L300;
00211 }
00212 d__[k] = d__[i__];
00213 d__[i__] = p;
00214
00215 i__2 = *n;
00216 for (j = 1; j <= i__2; ++j) {
00217 p = z__[j + i__ * z_dim1];
00218 z__[j + i__ * z_dim1] = z__[j + k * z_dim1];
00219 z__[j + k * z_dim1] = p;
00220 /* L280: */
00221 }
00222
00223 L300:
00224 ;
00225 }
00226
00227 goto L1001;
00228 /* .......... SET ERROR -- NO CONVERGENCE TO AN */
00229 /* EIGENVALUE AFTER 30 ITERATIONS .......... */
00230 L1000:
00231 *ierr = l;
00232 L1001:
00233 return 0;
00234 } /* imtql2_ */
|
Variable Documentation
|
|
Definition at line 10 of file eis_imtql2.c. Referenced by imtql2_(). |