Doxygen Source Code Documentation
cdf_64.c File Reference
#include "cdflib.h"
Go to the source code of this file.
Functions | |
void | gratio (double *a, double *x, double *ans, double *qans, int *ind) |
Function Documentation
|
Definition at line 2 of file cdf_64.c. References a, c, erf1(), erfc1(), fifdmax1(), fifidint(), gam1(), i, ind, l, r, rexp(), rlog(), spmpar(), x0, x00, and Xgamm(). Referenced by cumgam(), and gaminv().
00032 { 00033 static double alog10 = 2.30258509299405e0; 00034 static double d10 = -.185185185185185e-02; 00035 static double d20 = .413359788359788e-02; 00036 static double d30 = .649434156378601e-03; 00037 static double d40 = -.861888290916712e-03; 00038 static double d50 = -.336798553366358e-03; 00039 static double d60 = .531307936463992e-03; 00040 static double d70 = .344367606892378e-03; 00041 static double rt2pin = .398942280401433e0; 00042 static double rtpi = 1.77245385090552e0; 00043 static double third = .333333333333333e0; 00044 static double acc0[3] = { 00045 5.e-15,5.e-7,5.e-4 00046 }; 00047 static double big[3] = { 00048 20.0e0,14.0e0,10.0e0 00049 }; 00050 static double d0[13] = { 00051 .833333333333333e-01,-.148148148148148e-01,.115740740740741e-02, 00052 .352733686067019e-03,-.178755144032922e-03,.391926317852244e-04, 00053 -.218544851067999e-05,-.185406221071516e-05,.829671134095309e-06, 00054 -.176659527368261e-06,.670785354340150e-08,.102618097842403e-07, 00055 -.438203601845335e-08 00056 }; 00057 static double d1[12] = { 00058 -.347222222222222e-02,.264550264550265e-02,-.990226337448560e-03, 00059 .205761316872428e-03,-.401877572016461e-06,-.180985503344900e-04, 00060 .764916091608111e-05,-.161209008945634e-05,.464712780280743e-08, 00061 .137863344691572e-06,-.575254560351770e-07,.119516285997781e-07 00062 }; 00063 static double d2[10] = { 00064 -.268132716049383e-02,.771604938271605e-03,.200938786008230e-05, 00065 -.107366532263652e-03,.529234488291201e-04,-.127606351886187e-04, 00066 .342357873409614e-07,.137219573090629e-05,-.629899213838006e-06, 00067 .142806142060642e-06 00068 }; 00069 static double d3[8] = { 00070 .229472093621399e-03,-.469189494395256e-03,.267720632062839e-03, 00071 -.756180167188398e-04,-.239650511386730e-06,.110826541153473e-04, 00072 -.567495282699160e-05,.142309007324359e-05 00073 }; 00074 static double d4[6] = { 00075 .784039221720067e-03,-.299072480303190e-03,-.146384525788434e-05, 00076 .664149821546512e-04,-.396836504717943e-04,.113757269706784e-04 00077 }; 00078 static double d5[4] = { 00079 -.697281375836586e-04,.277275324495939e-03,-.199325705161888e-03, 00080 .679778047793721e-04 00081 }; 00082 static double d6[2] = { 00083 -.592166437353694e-03,.270878209671804e-03 00084 }; 00085 static double e00[3] = { 00086 .25e-3,.25e-1,.14e0 00087 }; 00088 static double x00[3] = { 00089 31.0e0,17.0e0,9.7e0 00090 }; 00091 static int K1 = 1; 00092 static int K2 = 0; 00093 static double a2n,a2nm1,acc,am0,amn,an,an0,apn,b2n,b2nm1,c,c0,c1,c2,c3,c4,c5,c6, 00094 cma,e,e0,g,h,j,l,r,rta,rtx,s,sum,t,t1,tol,twoa,u,w,x0,y,z; 00095 static int i,iop,m,max,n; 00096 static double wk[20],T3; 00097 static int T4,T5; 00098 static double T6,T7; 00099 /* 00100 .. 00101 .. Executable Statements .. 00102 */ 00103 /* 00104 -------------------- 00105 ****** E IS A MACHINE DEPENDENT CONSTANT. E IS THE SMALLEST 00106 FLOATING POINT NUMBER FOR WHICH 1.0 + E .GT. 1.0 . 00107 */ 00108 e = spmpar(&K1); 00109 if(*a < 0.0e0 || *x < 0.0e0) goto S430; 00110 if(*a == 0.0e0 && *x == 0.0e0) goto S430; 00111 if(*a**x == 0.0e0) goto S420; 00112 iop = *ind+1; 00113 if(iop != 1 && iop != 2) iop = 3; 00114 acc = fifdmax1(acc0[iop-1],e); 00115 e0 = e00[iop-1]; 00116 x0 = x00[iop-1]; 00117 /* 00118 SELECT THE APPROPRIATE ALGORITHM 00119 */ 00120 if(*a >= 1.0e0) goto S10; 00121 if(*a == 0.5e0) goto S390; 00122 if(*x < 1.1e0) goto S160; 00123 t1 = *a*log(*x)-*x; 00124 u = *a*exp(t1); 00125 if(u == 0.0e0) goto S380; 00126 r = u*(1.0e0+gam1(a)); 00127 goto S250; 00128 S10: 00129 if(*a >= big[iop-1]) goto S30; 00130 if(*a > *x || *x >= x0) goto S20; 00131 twoa = *a+*a; 00132 m = fifidint(twoa); 00133 if(twoa != (double)m) goto S20; 00134 i = m/2; 00135 if(*a == (double)i) goto S210; 00136 goto S220; 00137 S20: 00138 t1 = *a*log(*x)-*x; 00139 r = exp(t1)/Xgamm(a); 00140 goto S40; 00141 S30: 00142 l = *x/ *a; 00143 if(l == 0.0e0) goto S370; 00144 s = 0.5e0+(0.5e0-l); 00145 z = rlog(&l); 00146 if(z >= 700.0e0/ *a) goto S410; 00147 y = *a*z; 00148 rta = sqrt(*a); 00149 if(fabs(s) <= e0/rta) goto S330; 00150 if(fabs(s) <= 0.4e0) goto S270; 00151 t = pow(1.0e0/ *a,2.0); 00152 t1 = (((0.75e0*t-1.0e0)*t+3.5e0)*t-105.0e0)/(*a*1260.0e0); 00153 t1 -= y; 00154 r = rt2pin*rta*exp(t1); 00155 S40: 00156 if(r == 0.0e0) goto S420; 00157 if(*x <= fifdmax1(*a,alog10)) goto S50; 00158 if(*x < x0) goto S250; 00159 goto S100; 00160 S50: 00161 /* 00162 TAYLOR SERIES FOR P/R 00163 */ 00164 apn = *a+1.0e0; 00165 t = *x/apn; 00166 wk[0] = t; 00167 for(n=2; n<=20; n++) { 00168 apn += 1.0e0; 00169 t *= (*x/apn); 00170 if(t <= 1.e-3) goto S70; 00171 wk[n-1] = t; 00172 } 00173 n = 20; 00174 S70: 00175 sum = t; 00176 tol = 0.5e0*acc; 00177 S80: 00178 apn += 1.0e0; 00179 t *= (*x/apn); 00180 sum += t; 00181 if(t > tol) goto S80; 00182 max = n-1; 00183 for(m=1; m<=max; m++) { 00184 n -= 1; 00185 sum += wk[n-1]; 00186 } 00187 *ans = r/ *a*(1.0e0+sum); 00188 *qans = 0.5e0+(0.5e0-*ans); 00189 return; 00190 S100: 00191 /* 00192 ASYMPTOTIC EXPANSION 00193 */ 00194 amn = *a-1.0e0; 00195 t = amn/ *x; 00196 wk[0] = t; 00197 for(n=2; n<=20; n++) { 00198 amn -= 1.0e0; 00199 t *= (amn/ *x); 00200 if(fabs(t) <= 1.e-3) goto S120; 00201 wk[n-1] = t; 00202 } 00203 n = 20; 00204 S120: 00205 sum = t; 00206 S130: 00207 if(fabs(t) <= acc) goto S140; 00208 amn -= 1.0e0; 00209 t *= (amn/ *x); 00210 sum += t; 00211 goto S130; 00212 S140: 00213 max = n-1; 00214 for(m=1; m<=max; m++) { 00215 n -= 1; 00216 sum += wk[n-1]; 00217 } 00218 *qans = r/ *x*(1.0e0+sum); 00219 *ans = 0.5e0+(0.5e0-*qans); 00220 return; 00221 S160: 00222 /* 00223 TAYLOR SERIES FOR P(A,X)/X**A 00224 */ 00225 an = 3.0e0; 00226 c = *x; 00227 sum = *x/(*a+3.0e0); 00228 tol = 3.0e0*acc/(*a+1.0e0); 00229 S170: 00230 an += 1.0e0; 00231 c = -(c*(*x/an)); 00232 t = c/(*a+an); 00233 sum += t; 00234 if(fabs(t) > tol) goto S170; 00235 j = *a**x*((sum/6.0e0-0.5e0/(*a+2.0e0))**x+1.0e0/(*a+1.0e0)); 00236 z = *a*log(*x); 00237 h = gam1(a); 00238 g = 1.0e0+h; 00239 if(*x < 0.25e0) goto S180; 00240 if(*a < *x/2.59e0) goto S200; 00241 goto S190; 00242 S180: 00243 if(z > -.13394e0) goto S200; 00244 S190: 00245 w = exp(z); 00246 *ans = w*g*(0.5e0+(0.5e0-j)); 00247 *qans = 0.5e0+(0.5e0-*ans); 00248 return; 00249 S200: 00250 l = rexp(&z); 00251 w = 0.5e0+(0.5e0+l); 00252 *qans = (w*j-l)*g-h; 00253 if(*qans < 0.0e0) goto S380; 00254 *ans = 0.5e0+(0.5e0-*qans); 00255 return; 00256 S210: 00257 /* 00258 FINITE SUMS FOR Q WHEN A .GE. 1 00259 AND 2*A IS AN INTEGER 00260 */ 00261 sum = exp(-*x); 00262 t = sum; 00263 n = 1; 00264 c = 0.0e0; 00265 goto S230; 00266 S220: 00267 rtx = sqrt(*x); 00268 sum = erfc1(&K2,&rtx); 00269 t = exp(-*x)/(rtpi*rtx); 00270 n = 0; 00271 c = -0.5e0; 00272 S230: 00273 if(n == i) goto S240; 00274 n += 1; 00275 c += 1.0e0; 00276 t = *x*t/c; 00277 sum += t; 00278 goto S230; 00279 S240: 00280 *qans = sum; 00281 *ans = 0.5e0+(0.5e0-*qans); 00282 return; 00283 S250: 00284 /* 00285 CONTINUED FRACTION EXPANSION 00286 */ 00287 tol = fifdmax1(5.0e0*e,acc); 00288 a2nm1 = a2n = 1.0e0; 00289 b2nm1 = *x; 00290 b2n = *x+(1.0e0-*a); 00291 c = 1.0e0; 00292 S260: 00293 a2nm1 = *x*a2n+c*a2nm1; 00294 b2nm1 = *x*b2n+c*b2nm1; 00295 am0 = a2nm1/b2nm1; 00296 c += 1.0e0; 00297 cma = c-*a; 00298 a2n = a2nm1+cma*a2n; 00299 b2n = b2nm1+cma*b2n; 00300 an0 = a2n/b2n; 00301 if(fabs(an0-am0) >= tol*an0) goto S260; 00302 *qans = r*an0; 00303 *ans = 0.5e0+(0.5e0-*qans); 00304 return; 00305 S270: 00306 /* 00307 GENERAL TEMME EXPANSION 00308 */ 00309 if(fabs(s) <= 2.0e0*e && *a*e*e > 3.28e-3) goto S430; 00310 c = exp(-y); 00311 T3 = sqrt(y); 00312 w = 0.5e0*erfc1(&K1,&T3); 00313 u = 1.0e0/ *a; 00314 z = sqrt(z+z); 00315 if(l < 1.0e0) z = -z; 00316 T4 = iop-2; 00317 if(T4 < 0) goto S280; 00318 else if(T4 == 0) goto S290; 00319 else goto S300; 00320 S280: 00321 if(fabs(s) <= 1.e-3) goto S340; 00322 c0 = ((((((((((((d0[12]*z+d0[11])*z+d0[10])*z+d0[9])*z+d0[8])*z+d0[7])*z+d0[ 00323 6])*z+d0[5])*z+d0[4])*z+d0[3])*z+d0[2])*z+d0[1])*z+d0[0])*z-third; 00324 c1 = (((((((((((d1[11]*z+d1[10])*z+d1[9])*z+d1[8])*z+d1[7])*z+d1[6])*z+d1[5] 00325 )*z+d1[4])*z+d1[3])*z+d1[2])*z+d1[1])*z+d1[0])*z+d10; 00326 c2 = (((((((((d2[9]*z+d2[8])*z+d2[7])*z+d2[6])*z+d2[5])*z+d2[4])*z+d2[3])*z+ 00327 d2[2])*z+d2[1])*z+d2[0])*z+d20; 00328 c3 = (((((((d3[7]*z+d3[6])*z+d3[5])*z+d3[4])*z+d3[3])*z+d3[2])*z+d3[1])*z+ 00329 d3[0])*z+d30; 00330 c4 = (((((d4[5]*z+d4[4])*z+d4[3])*z+d4[2])*z+d4[1])*z+d4[0])*z+d40; 00331 c5 = (((d5[3]*z+d5[2])*z+d5[1])*z+d5[0])*z+d50; 00332 c6 = (d6[1]*z+d6[0])*z+d60; 00333 t = ((((((d70*u+c6)*u+c5)*u+c4)*u+c3)*u+c2)*u+c1)*u+c0; 00334 goto S310; 00335 S290: 00336 c0 = (((((d0[5]*z+d0[4])*z+d0[3])*z+d0[2])*z+d0[1])*z+d0[0])*z-third; 00337 c1 = (((d1[3]*z+d1[2])*z+d1[1])*z+d1[0])*z+d10; 00338 c2 = d2[0]*z+d20; 00339 t = (c2*u+c1)*u+c0; 00340 goto S310; 00341 S300: 00342 t = ((d0[2]*z+d0[1])*z+d0[0])*z-third; 00343 S310: 00344 if(l < 1.0e0) goto S320; 00345 *qans = c*(w+rt2pin*t/rta); 00346 *ans = 0.5e0+(0.5e0-*qans); 00347 return; 00348 S320: 00349 *ans = c*(w-rt2pin*t/rta); 00350 *qans = 0.5e0+(0.5e0-*ans); 00351 return; 00352 S330: 00353 /* 00354 TEMME EXPANSION FOR L = 1 00355 */ 00356 if(*a*e*e > 3.28e-3) goto S430; 00357 c = 0.5e0+(0.5e0-y); 00358 w = (0.5e0-sqrt(y)*(0.5e0+(0.5e0-y/3.0e0))/rtpi)/c; 00359 u = 1.0e0/ *a; 00360 z = sqrt(z+z); 00361 if(l < 1.0e0) z = -z; 00362 T5 = iop-2; 00363 if(T5 < 0) goto S340; 00364 else if(T5 == 0) goto S350; 00365 else goto S360; 00366 S340: 00367 c0 = ((((((d0[6]*z+d0[5])*z+d0[4])*z+d0[3])*z+d0[2])*z+d0[1])*z+d0[0])*z- 00368 third; 00369 c1 = (((((d1[5]*z+d1[4])*z+d1[3])*z+d1[2])*z+d1[1])*z+d1[0])*z+d10; 00370 c2 = ((((d2[4]*z+d2[3])*z+d2[2])*z+d2[1])*z+d2[0])*z+d20; 00371 c3 = (((d3[3]*z+d3[2])*z+d3[1])*z+d3[0])*z+d30; 00372 c4 = (d4[1]*z+d4[0])*z+d40; 00373 c5 = (d5[1]*z+d5[0])*z+d50; 00374 c6 = d6[0]*z+d60; 00375 t = ((((((d70*u+c6)*u+c5)*u+c4)*u+c3)*u+c2)*u+c1)*u+c0; 00376 goto S310; 00377 S350: 00378 c0 = (d0[1]*z+d0[0])*z-third; 00379 c1 = d1[0]*z+d10; 00380 t = (d20*u+c1)*u+c0; 00381 goto S310; 00382 S360: 00383 t = d0[0]*z-third; 00384 goto S310; 00385 S370: 00386 /* 00387 SPECIAL CASES 00388 */ 00389 *ans = 0.0e0; 00390 *qans = 1.0e0; 00391 return; 00392 S380: 00393 *ans = 1.0e0; 00394 *qans = 0.0e0; 00395 return; 00396 S390: 00397 if(*x >= 0.25e0) goto S400; 00398 T6 = sqrt(*x); 00399 *ans = erf1(&T6); 00400 *qans = 0.5e0+(0.5e0-*ans); 00401 return; 00402 S400: 00403 T7 = sqrt(*x); 00404 *qans = erfc1(&K2,&T7); 00405 *ans = 0.5e0+(0.5e0-*qans); 00406 return; 00407 S410: 00408 if(fabs(s) <= 2.0e0*e) goto S430; 00409 S420: 00410 if(*x <= *a) goto S370; 00411 goto S380; 00412 S430: 00413 /* 00414 ERROR RETURN 00415 */ 00416 *ans = 2.0e0; 00417 return; 00418 } /* END */ |