Doxygen Source Code Documentation
3dcalc.c File Reference
#include "mrilib.h"
#include "parser.h"
Go to the source code of this file.
Defines | |
#define | ALLOW_BUCKETS |
#define | ALLOW_SUBV |
#define | DSHIFT_MODE_STOP 0 |
#define | DSHIFT_MODE_WRAP 1 |
#define | DSHIFT_MODE_ZERO 2 |
#define | HAS_I CALC_has_sym[ 8] |
#define | HAS_J CALC_has_sym[ 9] |
#define | HAS_K CALC_has_sym[10] |
#define | HAS_X CALC_has_sym[23] |
#define | HAS_Y CALC_has_sym[24] |
#define | HAS_Z CALC_has_sym[25] |
#define | HAS_T CALC_has_sym[19] |
#define | HAS_L CALC_has_sym[11] |
#define | PREDEFINED_MASK |
#define | MANGLE_NONE 0 |
#define | MANGLE_RAI 1 |
#define | MANGLE_LPI 2 |
#define | VAR_DEFINED(kv) |
#define | VSIZE 1024 |
Functions | |
void | CALC_read_opts (int, char **) |
void | CALC_Syntax (void) |
int | TS_reader (int, char *) |
int | IJKAR_reader (int, char *) |
void | CALC_read_opts (int argc, char *argv[]) |
int | main (int argc, char *argv[]) |
Variables | |
int | CALC_datum = ILLEGAL_TYPE |
int | CALC_nvox = -1 |
PARSER_code * | CALC_code = NULL |
int | ntime [26] |
int | ntime_max = 0 |
int | CALC_fscale = 0 |
int | CALC_gscale = 0 |
int | CALC_nscale = 0 |
int | CALC_histpar = -1 |
int | CALC_dshift [26] |
int | CALC_dshift_i [26] |
int | CALC_dshift_j [26] |
int | CALC_dshift_k [26] |
int | CALC_dshift_l [26] |
int | CALC_dshift_mode [26] |
int | CALC_dshift_mode_current = DSHIFT_MODE_STOP |
int | CALC_has_timeshift = 0 |
int | CALC_has_sym [26] |
char | abet [] = "abcdefghijklmnopqrstuvwxyz" |
int | CALC_has_predefined = 0 |
int | CALC_has_xyz = 0 |
int | CALC_mangle_xyz = 0 |
THD_3dim_dataset * | CALC_dset [26] |
int | CALC_type [26] |
byte ** | CALC_byte [26] |
short ** | CALC_short [26] |
float ** | CALC_float [26] |
float * | CALC_ffac [26] |
int | CALC_noffac [26] |
int | CALC_verbose = 0 |
char | CALC_output_prefix [THD_MAX_PREFIX] = "calc" |
char | CALC_session [THD_MAX_NAME] = "./" |
MRI_IMAGE * | TS_flim [26] |
float * | TS_flar [26] |
int | TS_nmax = 0 |
int | TS_make = 0 |
float | TS_dt = 1.0 |
MRI_IMAGE * | IJKAR_flim [26] |
float * | IJKAR_flar [26] |
int | IJKAR_dcod [26] |
float | Rfac = 0.299 |
float | Gfac = 0.587 |
float | Bfac = 0.114 |
int | CALC_taxis_num = 0 |
Define Documentation
|
Definition at line 35 of file 3dcalc.c. Referenced by CALC_Syntax(). |
|
Definition at line 36 of file 3dcalc.c. Referenced by CALC_Syntax(). |
|
Definition at line 60 of file 3dcalc.c. Referenced by CALC_read_opts(), and main(). |
|
Definition at line 61 of file 3dcalc.c. Referenced by CALC_read_opts(), and main(). |
|
Definition at line 62 of file 3dcalc.c. Referenced by CALC_read_opts(), and main(). |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Definition at line 97 of file 3dcalc.c. Referenced by CALC_read_opts(), and main(). |
|
|
|
Definition at line 96 of file 3dcalc.c. Referenced by CALC_read_opts(). |
|
Value: ((1<< 8)|(1<< 9)|(1<<10)|(1<<11)| \ (1<<19)|(1<<23)|(1<<24)|(1<<25) ) Definition at line 88 of file 3dcalc.c. Referenced by CALC_read_opts(). |
|
Value: (TS_flim[kv] != NULL || IJKAR_flim[kv] != NULL || \ CALC_dset[kv] != NULL || CALC_dshift[kv] >= 0 ) Definition at line 126 of file 3dcalc.c. Referenced by CALC_read_opts(). |
|
|
Function Documentation
|
Definition at line 187 of file 3dcalc.c. References abet, argc, Bfac, CALC_byte, CALC_datum, CALC_dshift, CALC_dshift_i, CALC_dshift_j, CALC_dshift_k, CALC_dshift_l, CALC_dshift_mode, CALC_dshift_mode_current, CALC_ffac, CALC_float, CALC_fscale, CALC_gscale, CALC_has_predefined, CALC_has_sym, CALC_has_timeshift, CALC_has_xyz, CALC_histpar, CALC_mangle_xyz, CALC_noffac, CALC_nscale, CALC_nvox, CALC_output_prefix, CALC_session, CALC_short, CALC_taxis_num, CALC_type, CALC_verbose, calloc, THD_3dim_dataset::daxes, THD_3dim_dataset::dblk, DSET_ARRAY, DSET_BRICK_BYTES, DSET_BRICK_FACTOR, DSET_BRICK_TYPE, DSET_datum_constant, DSET_load, DSET_LOADED, DSET_mallocize, DSET_NUM_TIMES, DSET_NVALS, DSET_NX, DSET_NY, DSET_NZ, DSHIFT_MODE_STOP, DSHIFT_MODE_WRAP, DSHIFT_MODE_ZERO, dt, EDIT_coerce_scale_type(), EDIT_substitute_brick(), ERROR_exit(), ERROR_message(), far, free, Gfac, IJKAR_dcod, IJKAR_reader(), INFO_message(), malloc, MANGLE_LPI, MANGLE_RAI, MAX, MCW_get_intlist(), MCW_intlist_allow_negative(), MCW_strncpy, MRI_type_name, ntime, ntime_max, MRI_IMAGE::nx, THD_dataxes::nxx, THD_dataxes::nyy, THD_dataxes::nzz, PARSER_generate_code(), PARSER_mark_symbols(), PARSER_set_printout(), PREDEFINED_MASK, Rfac, strtod(), THD_load_datablock(), THD_MAX_NAME, THD_MAX_PREFIX, THD_open_dataset(), THD_open_one_dataset(), TS_dt, TS_make, TS_nmax, TS_reader(), VAR_DEFINED, and WARNING_message().
00188 { 00189 int nopt = 1 ; 00190 int ids ; 00191 int ii, kk; 00192 00193 for( ids=0 ; ids < 26 ; ids++ ){ 00194 CALC_dset[ids] = NULL ; 00195 CALC_type[ids] = -1 ; 00196 TS_flim[ids] = NULL ; 00197 IJKAR_flim[ids] = NULL ; /* 22 Feb 2005 */ 00198 00199 CALC_dshift[ids] = -1 ; /* 22 Nov 1999 */ 00200 CALC_dshift_mode[ids] = CALC_dshift_mode_current ; 00201 00202 CALC_noffac[ids] = 1 ; /* 14 Nov 2003 */ 00203 } 00204 00205 while( nopt < argc && argv[nopt][0] == '-' ){ 00206 00207 /**** -dicom, -RAI, -LPI, -SPM [18 May 2005] ****/ 00208 00209 if( strcasecmp(argv[nopt],"-dicom") == 0 || strcasecmp(argv[nopt],"-rai") == 0 ){ 00210 CALC_mangle_xyz = MANGLE_RAI ; 00211 nopt++ ; continue ; 00212 } 00213 00214 if( strcasecmp(argv[nopt],"-spm") == 0 || strcasecmp(argv[nopt],"-lpi") == 0 ){ 00215 CALC_mangle_xyz = MANGLE_LPI ; 00216 nopt++ ; continue ; 00217 } 00218 00219 /**** -rgbfac r g b [10 Feb 2003] ****/ 00220 00221 if( strncasecmp(argv[nopt],"-rgbfac",7) == 0 ){ 00222 if( ++nopt >= argc ) 00223 ERROR_exit("need an argument after -rgbfac!\n") ; 00224 Rfac = strtod( argv[nopt++] , NULL ) ; 00225 Gfac = strtod( argv[nopt++] , NULL ) ; 00226 Bfac = strtod( argv[nopt++] , NULL ) ; 00227 if( Rfac == 0.0 && Gfac == 0.0 && Bfac == 0.0 ) 00228 ERROR_exit("All 3 factors after -rgbfac are zero!?\n"); 00229 continue ; 00230 } 00231 00232 /**** -taxis N:dt [28 Apr 2003] ****/ 00233 00234 if( strncasecmp(argv[nopt],"-taxis",6) == 0 ){ 00235 char *cpt ; 00236 if( ++nopt >= argc ) 00237 ERROR_exit("need an argument after -taxis!\n") ; 00238 CALC_taxis_num = strtod( argv[nopt] , &cpt ) ; 00239 if( CALC_taxis_num < 2 ) 00240 ERROR_exit("N value after -taxis must be bigger than 1!\n"); 00241 if( *cpt == ':' ){ 00242 float dt = strtod( cpt+1 , &cpt ) ; 00243 if( dt > 0.0 ){ 00244 TS_dt = dt ; 00245 if( *cpt == 'm' && *(cpt+1) == 's' ) TS_dt *= 0.001 ; /* 09 Mar 2004 */ 00246 } else { 00247 WARNING_message("time step value in '-taxis %s' not legal!\n",argv[nopt]); 00248 } 00249 } 00250 nopt++ ; continue ; /* go to next arg */ 00251 } 00252 00253 /**** -dt val [13 Aug 2001] ****/ 00254 00255 if( strncasecmp(argv[nopt],"-dt",3) == 0 || strncmp(argv[nopt],"-TR",3) == 0 ){ 00256 char *cpt ; 00257 if( ++nopt >= argc ) 00258 ERROR_exit("need an argument after -dt!\n") ; 00259 TS_dt = strtod( argv[nopt] , &cpt ) ; 00260 if( TS_dt <= 0.0 ) 00261 ERROR_exit("Illegal time step value after -dt!\n"); 00262 if( *cpt == 'm' && *(cpt+1) == 's' ) TS_dt *= 0.001 ; /* 09 Mar 2004 */ 00263 nopt++ ; continue ; /* go to next arg */ 00264 } 00265 00266 /**** -histpar letter [22 Nov 1999] ****/ 00267 00268 if( strncasecmp(argv[nopt],"-histpar",5) == 0 ){ 00269 if( ++nopt >= argc ) 00270 ERROR_exit("need an argument after -histpar!\n") ; 00271 if( argv[nopt][0] < 'a' || argv[nopt][0] > 'z') 00272 ERROR_exit("argument after -histpar is illegal!\n"); 00273 CALC_histpar = (int) (argv[nopt][0] - 'a') ; 00274 00275 nopt++ ; continue ; /* go to next arg */ 00276 } 00277 00278 /**** -datum type ****/ 00279 00280 if( strncasecmp(argv[nopt],"-datum",6) == 0 ){ 00281 if( ++nopt >= argc ) 00282 ERROR_exit("need an argument after -datum!\n") ; 00283 if( strcasecmp(argv[nopt],"short") == 0 ){ 00284 CALC_datum = MRI_short ; 00285 } else if( strcasecmp(argv[nopt],"float") == 0 ){ 00286 CALC_datum = MRI_float ; 00287 } else if( strcasecmp(argv[nopt],"byte") == 0 ){ 00288 CALC_datum = MRI_byte ; 00289 } else if( strcasecmp(argv[nopt],"complex") == 0 ){ /* not listed in help */ 00290 CALC_datum = MRI_complex ; 00291 } else { 00292 ERROR_exit("-datum of type '%s' not supported in 3dcalc!\n",argv[nopt]) ; 00293 } 00294 nopt++ ; continue ; /* go to next arg */ 00295 } 00296 00297 /**** -verbose [30 April 1998] ****/ 00298 00299 if( strncasecmp(argv[nopt],"-verbose",5) == 0 ){ 00300 CALC_verbose = 1 ; 00301 nopt++ ; continue ; 00302 } 00303 00304 /**** -nscale [15 Jun 2000] ****/ 00305 00306 if( strncasecmp(argv[nopt],"-nscale",6) == 0 ){ 00307 CALC_gscale = CALC_fscale = 0 ; 00308 CALC_nscale = 1 ; 00309 nopt++ ; continue ; 00310 } 00311 00312 /**** -fscale [16 Mar 1998] ****/ 00313 00314 if( strncasecmp(argv[nopt],"-fscale",6) == 0 ){ 00315 CALC_fscale = 1 ; 00316 CALC_nscale = 0 ; 00317 nopt++ ; continue ; 00318 } 00319 00320 /**** -gscale [01 Apr 1999] ****/ 00321 00322 if( strncasecmp(argv[nopt],"-gscale",6) == 0 ){ 00323 CALC_gscale = CALC_fscale = 1 ; 00324 CALC_nscale = 0 ; 00325 nopt++ ; continue ; 00326 } 00327 00328 /**** -prefix prefix ****/ 00329 00330 if( strncasecmp(argv[nopt],"-prefix",6) == 0 ){ 00331 nopt++ ; 00332 if( nopt >= argc ) 00333 ERROR_exit("need argument after -prefix!\n") ; 00334 MCW_strncpy( CALC_output_prefix , argv[nopt++] , THD_MAX_PREFIX ) ; 00335 continue ; 00336 } 00337 00338 /**** -session directory ****/ 00339 00340 if( strncasecmp(argv[nopt],"-session",6) == 0 ){ 00341 nopt++ ; 00342 if( nopt >= argc ) 00343 ERROR_exit("need argument after -session!\n") ; 00344 MCW_strncpy( CALC_session , argv[nopt++] , THD_MAX_NAME ) ; 00345 continue ; 00346 } 00347 00348 /**** -expr expression ****/ 00349 00350 if( strncasecmp(argv[nopt],"-expr",4) == 0 ){ 00351 if( CALC_code != NULL ) 00352 ERROR_exit("cannot have 2 -expr options!\n") ; 00353 nopt++ ; 00354 if( nopt >= argc ) 00355 ERROR_exit("need argument after -expr!\n") ; 00356 PARSER_set_printout(1) ; /* 21 Jul 2003 */ 00357 CALC_code = PARSER_generate_code( argv[nopt++] ) ; 00358 if( CALC_code == NULL ) 00359 ERROR_exit("illegal expression!\n") ; 00360 PARSER_mark_symbols( CALC_code , CALC_has_sym ) ; /* 15 Sep 1999 */ 00361 continue ; 00362 } 00363 00364 /**** -dsSTOP [22 Nov 1999] ****/ 00365 00366 if( strncasecmp(argv[nopt],"-dsSTOP",6) == 0 ){ 00367 CALC_dshift_mode_current = DSHIFT_MODE_STOP ; 00368 nopt++ ; continue ; 00369 } 00370 00371 /**** -dsWRAP [22 Nov 1999] ****/ 00372 00373 if( strncasecmp(argv[nopt],"-dsWRAP",6) == 0 ){ 00374 CALC_dshift_mode_current = DSHIFT_MODE_WRAP ; 00375 nopt++ ; continue ; 00376 } 00377 00378 /**** -dsZERO [22 Nov 1999] ****/ 00379 00380 if( strncasecmp(argv[nopt],"-dsZERO",6) == 0 ){ 00381 CALC_dshift_mode_current = DSHIFT_MODE_ZERO ; 00382 nopt++ ; continue ; 00383 } 00384 00385 /**** -<letter>[number] dataset ****/ 00386 00387 ids = strlen( argv[nopt] ) ; 00388 00389 if( (argv[nopt][1] >= 'a' && argv[nopt][1] <= 'z') && 00390 (ids == 2 || 00391 (ids > 2 && argv[nopt][2] >= '0' && argv[nopt][2] <= '9')) ){ 00392 00393 int ival , nxyz , isub , ll ; 00394 THD_3dim_dataset * dset ; 00395 00396 ival = argv[nopt][1] - 'a' ; 00397 if( VAR_DEFINED(ival) ) 00398 ERROR_exit("Can't define %c symbol twice\n",argv[nopt][1]); 00399 00400 isub = (ids == 2) ? 0 : strtol(argv[nopt]+2,NULL,10) ; 00401 if( isub < 0 ) 00402 ERROR_exit("Illegal sub-brick value: %s\n",argv[nopt]) ; 00403 00404 nopt++ ; 00405 if( nopt >= argc ) 00406 ERROR_exit("need argument after %s\n",argv[nopt-1]); 00407 00408 /*-- 22 Feb 2005: allow for I:, J:, K: prefix --*/ 00409 00410 ll = strlen(argv[nopt]) ; 00411 if( ll >= 4 && 00412 strstr(argv[nopt],"1D") != NULL && 00413 argv[nopt][1] == ':' && 00414 (argv[nopt][0] == 'I' || argv[nopt][0] == 'i' || 00415 argv[nopt][0] == 'J' || argv[nopt][0] == 'j' || 00416 argv[nopt][0] == 'K' || argv[nopt][0] == 'k' ) ){ 00417 00418 ll = IJKAR_reader( ival , argv[nopt]+2 ) ; 00419 if( ll == 0 ){ 00420 switch( argv[nopt][0] ){ 00421 case 'I': case 'i': IJKAR_dcod[ival] = 8 ; break ; 00422 case 'J': case 'j': IJKAR_dcod[ival] = 9 ; break ; 00423 case 'K': case 'k': IJKAR_dcod[ival] = 10 ; break ; 00424 } 00425 nopt++ ; goto DSET_DONE ; 00426 } 00427 } 00428 00429 /*-- 17 Apr 1998: allow for a *.1D filename --*/ 00430 00431 ll = strlen(argv[nopt]) ; 00432 if( ll >= 4 && ( strstr(argv[nopt],".1D") != NULL || 00433 strstr(argv[nopt],"1D:") != NULL ) ){ 00434 00435 ll = TS_reader( ival , argv[nopt] ) ; 00436 if( ll == 0 ){ nopt++ ; goto DSET_DONE ; } 00437 00438 /* get to here => something bad happened, so try it as a dataset */ 00439 } 00440 00441 /*-- 22 Nov 1999: allow for a differentially 00442 subscripted name, as in "-b a[1,0,0,0]" --*/ 00443 00444 if( (argv[nopt][0] >= 'a' && argv[nopt][0] <= 'z') && /* legal name */ 00445 ( (ll >= 3 && argv[nopt][1] == '[') || /* subscript */ 00446 (ll == 3 && /* OR */ 00447 (argv[nopt][1] == '+' || argv[nopt][1] == '-')) /* +- ijkl */ 00448 ) ){ 00449 00450 int jds = argv[nopt][0] - 'a' ; /* actual dataset index */ 00451 int * ijkl ; /* array of subscripts */ 00452 00453 /*- sanity checks -*/ 00454 00455 if( ids > 2 ) 00456 ERROR_exit("Can't combine %s with differential subscripting %s\n", 00457 argv[nopt-1],argv[nopt]) ; 00458 if( CALC_dset[jds] == NULL ) 00459 ERROR_exit("Must define dataset %c before using it in %s\n", 00460 argv[nopt][0] , argv[nopt] ) ; 00461 00462 /*- get subscripts -*/ 00463 00464 if( argv[nopt][1] == '[' ){ /* format is [i,j,k,l] */ 00465 MCW_intlist_allow_negative(1) ; 00466 ijkl = MCW_get_intlist( 9999 , argv[nopt]+1 ) ; 00467 MCW_intlist_allow_negative(0) ; 00468 if( ijkl == NULL || ijkl[0] != 4 ) 00469 ERROR_exit("Illegal differential subscripting %s\n", 00470 argv[nopt] ) ; 00471 } else { /* format is +i, -j, etc */ 00472 ijkl = (int *) malloc( sizeof(int) * 5 ) ; 00473 ijkl[1] = ijkl[2] = ijkl[3] = ijkl[4] = 0 ; /* initialize */ 00474 switch( argv[nopt][2] ){ 00475 default: 00476 ERROR_exit("Bad differential subscripting %s\n",argv[nopt]); 00477 00478 case 'i': ijkl[1] = (argv[nopt][1]=='+') ? 1 : -1 ; break ; 00479 case 'j': ijkl[2] = (argv[nopt][1]=='+') ? 1 : -1 ; break ; 00480 case 'k': ijkl[3] = (argv[nopt][1]=='+') ? 1 : -1 ; break ; 00481 case 'l': ijkl[4] = (argv[nopt][1]=='+') ? 1 : -1 ; break ; 00482 } 00483 } 00484 00485 /*- more sanity checks -*/ 00486 00487 if( ijkl[1]==0 && ijkl[2]==0 && ijkl[3]==0 && ijkl[4]==0 ) 00488 WARNING_message("differential subscript %s is all zero\n",argv[nopt]); 00489 00490 if( ntime[jds] == 1 && ijkl[4] != 0 ){ 00491 WARNING_message( 00492 "differential subscript %s has nonzero time\n" 00493 " + shift on base dataset with 1 sub-brick!\n" 00494 " + Setting time shift to 0.\n" , 00495 argv[nopt] ) ; 00496 ijkl[4] = 0 ; 00497 } 00498 00499 /*- set values for later use -*/ 00500 00501 CALC_dshift [ival] = jds ; 00502 CALC_dshift_i[ival] = ijkl[1] ; 00503 CALC_dshift_j[ival] = ijkl[2] ; 00504 CALC_dshift_k[ival] = ijkl[3] ; 00505 CALC_dshift_l[ival] = ijkl[4] ; 00506 00507 CALC_dshift_mode[ival] = CALC_dshift_mode_current ; 00508 00509 CALC_has_timeshift = CALC_has_timeshift || (ijkl[4] != 0) ; 00510 00511 /*- time to trot, Bwana -*/ 00512 00513 free(ijkl) ; nopt++ ; goto DSET_DONE ; 00514 00515 } /* end of _dshift */ 00516 00517 /*-- meanwhile, back at the "normal" dataset opening ranch --*/ 00518 00519 #ifndef ALLOW_SUBV 00520 dset = THD_open_one_dataset( argv[nopt++] ) ; 00521 if( dset == NULL ) 00522 ERROR_exit("can't open dataset %s\n",argv[nopt-1]) ; 00523 if( isub >= DSET_NVALS(dset) ) 00524 ERROR_exit("dataset %s only has %d sub-bricks\n", 00525 argv[nopt-1],DSET_NVALS(dset)) ; 00526 #else 00527 { char dname[512] ; /* 02 Nov 1999 */ 00528 00529 if( ids > 2 ){ /* mangle name */ 00530 if( strstr(argv[nopt],"[") != NULL ){ 00531 ERROR_exit( 00532 "Illegal combination of sub-brick specifiers: " 00533 "%s %s\n" , 00534 argv[nopt-1] , argv[nopt] ) ; 00535 } 00536 sprintf(dname,"%s[%d]",argv[nopt++],isub) ; /* use sub-brick */ 00537 isub = 0 ; /* 0 of dname */ 00538 } else { 00539 strcpy(dname,argv[nopt++]) ; /* don't mangle */ 00540 } 00541 dset = THD_open_dataset( dname ) ; /* open it */ 00542 if( dset == NULL ) 00543 ERROR_exit("can't open dataset %s\n",dname) ; 00544 } 00545 #endif 00546 00547 /* set some parameters based on the dataset */ 00548 00549 #ifdef ALLOW_BUCKETS 00550 ntime[ival] = DSET_NVALS(dset) ; 00551 #else 00552 ntime[ival] = DSET_NUM_TIMES(dset); 00553 #endif 00554 if ( ids > 2 ) ntime[ival] = 1 ; 00555 ntime_max = MAX( ntime_max, ntime[ival] ); 00556 00557 nxyz = dset->daxes->nxx * dset->daxes->nyy * dset->daxes->nzz ; 00558 if( CALC_nvox < 0 ){ 00559 CALC_nvox = nxyz ; 00560 } else if( nxyz != CALC_nvox ){ 00561 ERROR_exit("dataset %s differs in size from others\n",argv[nopt-1]); 00562 } 00563 00564 if( !DSET_datum_constant(dset) ){ /* 29 May 2003 */ 00565 float *far ; 00566 00567 WARNING_message("dataset %s has sub-bricks with different types\n" 00568 " + ==> converting all sub-bricks to floats\n", 00569 argv[nopt-1]); 00570 00571 DSET_mallocize(dset) ; DSET_load(dset) ; 00572 if( ! DSET_LOADED(dset) ) 00573 ERROR_exit("can't load %s from disk!\n",argv[nopt-1]); 00574 00575 for( ii=0 ; ii < ntime[ival] ; ii++ ){ 00576 if( DSET_BRICK_TYPE(dset,ii) != MRI_float ){ 00577 far = calloc( sizeof(float) , nxyz ) ; 00578 if( far == NULL ) 00579 ERROR_exit("can't malloc space for conversion\n"); 00580 EDIT_coerce_scale_type( nxyz , DSET_BRICK_FACTOR(dset,ii) , 00581 DSET_BRICK_TYPE(dset,ii), DSET_ARRAY(dset,ii), 00582 MRI_float , far ) ; 00583 EDIT_substitute_brick( dset , ii , MRI_float , far ) ; 00584 DSET_BRICK_FACTOR(dset,ii) = 0.0 ; 00585 } 00586 } 00587 } 00588 00589 CALC_type[ival] = DSET_BRICK_TYPE(dset,isub) ; 00590 CALC_dset[ival] = dset ; 00591 00592 /* load floating scale factors */ 00593 /* 14 Nov 2003: CALC_noffac[ival] signals there is no scale factor 00594 (so can avoid the multiplication when loading values) */ 00595 00596 CALC_ffac[ival] = (float *) malloc( sizeof(float) * ntime[ival] ) ; 00597 if ( ntime[ival] == 1 ) { 00598 CALC_ffac[ival][0] = DSET_BRICK_FACTOR( dset , isub) ; 00599 if (CALC_ffac[ival][0] == 0.0 ) CALC_ffac[ival][0] = 1.0 ; 00600 if( CALC_ffac[ival][0] != 1.0 ) CALC_noffac[ival] = 0 ; /* 14 Nov 2003 */ 00601 } else { 00602 for (ii = 0 ; ii < ntime[ival] ; ii ++ ) { 00603 CALC_ffac[ival][ii] = DSET_BRICK_FACTOR(dset, ii) ; 00604 if (CALC_ffac[ival][ii] == 0.0 ) CALC_ffac[ival][ii] = 1.0; 00605 if( CALC_ffac[ival][ii] != 1.0 ) CALC_noffac[ival] = 0 ; /* 14 Nov 2003 */ 00606 } 00607 } 00608 00609 /* read data from disk */ 00610 00611 if( CALC_verbose ){ 00612 int iv , nb ; 00613 for( iv=nb=0 ; iv < DSET_NVALS(dset) ; iv++ ) 00614 nb += DSET_BRICK_BYTES(dset,iv) ; 00615 INFO_message("Reading dataset %s (%d bytes)\n",argv[nopt-1],nb); 00616 } 00617 00618 if( ! DSET_LOADED(dset) ){ 00619 THD_load_datablock( dset->dblk ) ; 00620 if( ! DSET_LOADED(dset) ) 00621 ERROR_exit("Can't read data brick for dataset %s\n",argv[nopt-1]) ; 00622 } 00623 /* set pointers for actual dataset arrays */ 00624 00625 switch (CALC_type[ival]) { 00626 case MRI_short: 00627 CALC_short[ival] = (short **) malloc( sizeof(short *) * ntime[ival] ) ; 00628 if (ntime[ival] == 1 ) 00629 CALC_short[ival][0] = (short *) DSET_ARRAY(dset, isub) ; 00630 else 00631 for (ii=0; ii < ntime[ival]; ii++) 00632 CALC_short[ival][ii] = (short *) DSET_ARRAY(dset, ii); 00633 break; 00634 00635 case MRI_float: 00636 CALC_float[ival] = (float **) malloc( sizeof(float *) * ntime[ival] ) ; 00637 if (ntime[ival] == 1 ) 00638 CALC_float[ival][0] = (float *) DSET_ARRAY(dset, isub) ; 00639 else 00640 for (ii=0; ii < ntime[ival]; ii++) 00641 CALC_float[ival][ii] = (float *) DSET_ARRAY(dset, ii); 00642 break; 00643 00644 case MRI_byte: 00645 CALC_byte[ival] = (byte **) malloc( sizeof(byte *) * ntime[ival] ) ; 00646 if (ntime[ival] == 1 ) 00647 CALC_byte[ival][0] = (byte *) DSET_ARRAY(dset, isub) ; 00648 else 00649 for (ii=0; ii < ntime[ival]; ii++) 00650 CALC_byte[ival][ii] = (byte *) DSET_ARRAY(dset, ii); 00651 break; 00652 00653 case MRI_rgb: /* 10 Feb 2003 */ 00654 CALC_byte[ival] = (byte **) malloc( sizeof(byte *) * ntime[ival] ) ; 00655 if (ntime[ival] == 1 ) 00656 CALC_byte[ival][0] = (byte *) DSET_ARRAY(dset, isub) ; 00657 else 00658 for (ii=0; ii < ntime[ival]; ii++) 00659 CALC_byte[ival][ii] = (byte *) DSET_ARRAY(dset, ii); 00660 break ; 00661 00662 default: 00663 ERROR_exit("Dataset %s has illegal data type: %s\n" , 00664 argv[nopt-1] , MRI_type_name[CALC_type[ival]] ) ; 00665 00666 } /* end of switch over type switch */ 00667 if( CALC_datum < 0 && CALC_type[ival] != MRI_rgb ) CALC_datum = CALC_type[ival] ; 00668 00669 DSET_DONE: continue; 00670 00671 } /* end of dataset input */ 00672 00673 ERROR_exit("Unknown option: %s\n",argv[nopt]) ; 00674 00675 } /* end of loop over options */ 00676 00677 /*---------------------------------------*/ 00678 /*** cleanup: check for various errors ***/ 00679 00680 if( nopt < argc ) 00681 ERROR_exit("Extra command line arguments puzzle me! argv[%d]=%s ...\n",nopt,argv[nopt]) ; 00682 00683 for( ids=0 ; ids < 26 ; ids++ ) if( CALC_dset[ids] != NULL ) break ; 00684 if( ids == 26 ) 00685 ERROR_exit("No actual input datasets given!\n") ; 00686 00687 /* 22 Feb 2005: check IJKAR inputs against 1st dataset found */ 00688 00689 for( ii=0 ; ii < 26 ; ii++ ){ 00690 if( IJKAR_flim[ii] != NULL ){ 00691 int siz ; 00692 switch( IJKAR_dcod[ii] ){ 00693 case 8: siz = DSET_NX(CALC_dset[ids]) ; break ; 00694 case 9: siz = DSET_NY(CALC_dset[ids]) ; break ; 00695 case 10: siz = DSET_NZ(CALC_dset[ids]) ; break ; 00696 } 00697 if( IJKAR_flim[ii]->nx != siz ) 00698 ERROR_message("dimension mismatch between '-%c' and '%-c'\n", 'a'+ii , 'a'+ids ) ; 00699 } 00700 } 00701 00702 if( CALC_code == NULL ) ERROR_exit("No expression given!\n") ; 00703 00704 if( CALC_histpar >= 0 && CALC_dset[CALC_histpar] == NULL ){ 00705 WARNING_message("-histpar dataset not defined!\n") ; 00706 CALC_histpar = -1 ; 00707 } 00708 00709 for (ids=0; ids < 26; ids ++) 00710 if (ntime[ids] > 1 && ntime[ids] != ntime_max ) { 00711 #ifdef ALLOW_BUCKETS 00712 ERROR_exit("Multi-brick datasets don't match!\n") ; 00713 #else 00714 ERROR_exit("3D+time datasets don't match!\n") ; 00715 #endif 00716 } 00717 00718 /* 17 Apr 1998: if all input datasets are 3D only (no time), 00719 and if there are any input time series, 00720 then the output must become 3D+time itself */ 00721 00722 if( ntime_max == 1 && TS_nmax > 0 ){ 00723 ntime_max = TS_nmax ; 00724 TS_make = 1 ; /* flag to force manufacture of a 3D+time dataset */ 00725 INFO_message( 00726 "Calculating 3D+time[%d]" 00727 " dataset from 3D datasets and time series, with dt=%g s\n" , 00728 ntime_max , TS_dt ) ; 00729 } 00730 00731 if( CALC_taxis_num > 0 ){ /* 28 Apr 2003 */ 00732 if( ntime_max > 1 ){ 00733 WARNING_message("-taxis %d overriden by dataset input(s)\n", 00734 CALC_taxis_num) ; 00735 } else { 00736 ntime_max = CALC_taxis_num ; 00737 TS_make = 1 ; 00738 INFO_message("Calculating 3D+time[%d]" 00739 " dataset from 3D datasets and -taxis with dt=%g s\n" , 00740 ntime_max , TS_dt ) ; 00741 } 00742 } 00743 00744 /* 15 Apr 1999: check if each input dataset is used, 00745 or if an undefined symbol is used. */ 00746 00747 for (ids=0; ids < 26; ids ++){ 00748 if( VAR_DEFINED(ids) && !CALC_has_sym[ids] ) 00749 WARNING_message("input '%c' is not used in the expression\n" , 00750 abet[ids] ) ; 00751 00752 else if( !VAR_DEFINED(ids) && CALC_has_sym[ids] ){ 00753 00754 if( ((1<<ids) & PREDEFINED_MASK) == 0 ){ 00755 WARNING_message( "symbol %c is used but not defined\n" , abet[ids] ) ; 00756 } else { 00757 CALC_has_predefined++ ; 00758 INFO_message("Symbol %c using predefined value\n",abet[ids] ) ; 00759 if( ids >= 23 ) CALC_has_xyz = 1 ; 00760 } 00761 } 00762 } 00763 00764 return ; 00765 } |
|
|
|
Definition at line 769 of file 3dcalc.c. References ALLOW_BUCKETS, ALLOW_SUBV, and MASTER_HELP_STRING. Referenced by main().
00770 { 00771 printf( 00772 "Program: 3dcalc \n" 00773 "Author: RW Cox et al \n" 00774 " \n" 00775 "3dcalc - AFNI's calculator program \n" 00776 " \n" 00777 " This program does voxel-by-voxel arithmetic on 3D datasets \n" 00778 " (limited to inter-voxel computation). \n" 00779 " \n" 00780 " The program assumes that the voxel-by-voxel computations are being \n" 00781 " performed on datasets that occupy the same space and have the same \n" 00782 " orientations. \n" 00783 " \n" 00784 "------------------------------------------------------------------------\n" 00785 "Usage: \n" 00786 "----- \n" 00787 " 3dcalc -a dsetA [-b dsetB...] \\ \n" 00788 " -expr EXPRESSION \\ \n" 00789 " [options] \n" 00790 " \n" 00791 "Examples: \n" 00792 "-------- \n" 00793 "1. Average datasets together, on a voxel-by-voxel basis: \n" 00794 " \n" 00795 " 3dcalc -a fred+tlrc -b ethel+tlrc -c lucy+tlrc \\ \n" 00796 " -expr '(a+b+c)/3' -prefix subjects_mean \n" 00797 " \n" 00798 "2. Perform arithmetic calculations between the sub-bricks of a single \n" 00799 " dataset by noting the sub-brick number on the command line: \n" 00800 " \n" 00801 " 3dcalc -a 'func+orig[2]' -b 'func+orig[4]' -expr 'sqrt(a*b)' \n" 00802 " \n" 00803 "3. Create a simple mask that consists only of values in sub-brick #0 \n" 00804 " that are greater than 3.14159: \n" 00805 " \n" 00806 " 3dcalc -a 'func+orig[0]' -expr 'ispositive(a-3.14159)' \\ \n" 00807 " -prefix mask \n" 00808 " \n" 00809 "4. Normalize subjects' time series datasets to percent change values in \n" 00810 " preparation for group analysis: \n" 00811 " \n" 00812 " Voxel-by-voxel, the example below divides each intensity value in \n" 00813 " the time series (epi_r1+orig) with the voxel's mean value (mean+orig)\n" 00814 " to get a percent change value. The 'ispositive' command will ignore \n" 00815 " voxels with mean values less than 167 (i.e., they are labeled as \n" 00816 " 'zero' in the output file 'percent_change+orig') and are most likely \n" 00817 " background/noncortical voxels. \n" 00818 " \n" 00819 " 3dcalc -a epi_run1+orig -b mean+orig \\ \n" 00820 " -expr '100 * a/b * ispositive(b-167)' -prefix percent_chng \n" 00821 " \n" 00822 "5. Create a compound mask from a statistical dataset, where 3 stimuli \n" 00823 " show activation. \n" 00824 " NOTE: 'step' and 'ispositive' are identical expressions that can \n" 00825 " be used interchangeably: \n" 00826 " \n" 00827 " 3dcalc -a 'func+orig[12]' -b 'func+orig[15]' -c 'func+orig[18]' \\ \n" 00828 " -expr 'step(a-4.2)*step(b-2.9)*step(c-3.1)' \\ \n" 00829 " -prefix compound_mask \n" 00830 " \n" 00831 "6. Same as example #5, but this time create a mask of 8 different values\n" 00832 " showing all combinations of activations (i.e., not only where \n" 00833 " everything is active, but also each stimulus individually, and all \n" 00834 " combinations). The output mask dataset labels voxel values as such: \n" 00835 " 0 = none active 1 = A only active 2 = B only active \n" 00836 " 3 = A and B only 4 = C only active 5 = A and C only \n" 00837 " 6 = B and C only 7 = all A, B, and C active \n" 00838 " \n" 00839 " 3dcalc -a 'func+orig[12]' -b 'func+orig[15]' -c 'func+orig[18]' \\ \n" 00840 " -expr 'step(a-4.2)+2*step(b-2.9)+4*step(c-3.1)' \\ \n" 00841 " -prefix mask_8 \n" 00842 " \n" 00843 "7. Create a region-of-interest mask comprised of a 3-dimensional sphere.\n" 00844 " Values within the ROI sphere will be labeled as '1' while values \n" 00845 " outside the mask will be labeled as '0'. Statistical analyses can \n" 00846 " then be done on the voxels within the ROI sphere. \n" 00847 " \n" 00848 " The example below puts a solid ball (sphere) of radius 3=sqrt(9) \n" 00849 " about the point with coordinates (x,y,z)=(20,30,70): \n" 00850 " \n" 00851 " 3dcalc -a anat+tlrc \\\n" 00852 " -expr 'step((9-(x-20)*(x-20)-(y-30)*(y-30)-(z-70)*(z-70))'\\\n" 00853 " -prefix ball \n" 00854 " \n" 00855 " 8. Some datsets are 'short' (16 bit) integers with a scalar attached, \n" 00856 " which allow them to be smaller than float datasets and to contain \n" 00857 " fractional values. \n" 00858 " \n" 00859 " Dataset 'a' is always used as a template for the output dataset. For\n" 00860 " the examples below, assume that datasets d1+orig and d2+orig consist\n" 00861 " of small integers. \n" 00862 " \n" 00863 " a) When dividing 'a' by 'b', the result should be scaled, so that a \n" 00864 " value of 2.4 is not truncated to '2'. To avoid this truncation, \n" 00865 " force scaling with the -fscale option: \n" 00866 " \n" 00867 " 3dcalc -a d1+orig -b d2+orig -expr 'a/b' -prefix quot -fscale \n" 00868 " \n" 00869 " b) If it is preferable that the result is of type 'float', then set \n" 00870 " the output data type (datum) to float: \n" 00871 " \n" 00872 " 3dcalc -a d1+orig -b d2+orig -expr 'a/b' -prefix quot \\ \n" 00873 " -datum float \n" 00874 " \n" 00875 " c) Perhaps an integral division is desired, so that 9/4=2, not 2.24.\n" 00876 " Force the results not to be scaled (opposite of example 8b) using\n" 00877 " the -nscale option: \n" 00878 " \n" 00879 " 3dcalc -a d1+orig -b d2+orig -expr 'a/b' -prefix quot -nscale \n" 00880 " \n" 00881 "------------------------------------------------------------------------\n" 00882 " \n" 00883 "ARGUMENTS for 3dcalc (must be included on command line): \n" 00884 "-------------------- ---- \n" 00885 " \n" 00886 " -a dname = Read dataset 'dname' and call the voxel values 'a' in the\n" 00887 " expression (-expr) that is input below. Up to 24 dnames \n" 00888 " (-a, -b, -c, ... -z) can be included in a single 3dcalc \n" 00889 " calculation/expression. \n" 00890 " ** If some letter name is used in the expression, but \n" 00891 " not present in one of the dataset options here, then \n" 00892 " that variable is set to 0. \n" 00893 " ** If the letter is followed by a number, then that \n" 00894 " number is used to select the sub-brick of the dataset \n" 00895 " which will be used in the calculations. \n" 00896 " E.g., '-b3 dname' specifies that the variable 'b' \n" 00897 " refers to sub-brick '3' of that dataset \n" 00898 " (indexes in AFNI start at 0). \n" 00899 " \n" 00900 " -expr = Apply the expression - within quotes - to the input \n" 00901 " datasets (dnames), one voxel at time, to produce the \n" 00902 " output dataset. \n" 00903 "------------------------------------------------------------------------\n" 00904 ) ; 00905 printf( 00906 " OPTIONS for 3dcalc: \n" 00907 " ------- \n" 00908 " \n" 00909 " -verbose = Makes the program print out various information as it \n" 00910 " progresses. \n" 00911 " \n" 00912 " -datum type= Coerce the output data to be stored as the given type, \n" 00913 " which may be byte, short, or float. \n" 00914 " [default = datum of first input dataset] \n" 00915 " \n" 00916 " -fscale = Force scaling of the output to the maximum integer \n" 00917 " range. This only has effect if the output datum is byte \n" 00918 " or short (either forced or defaulted). This option is \n" 00919 " often necessary to eliminate unpleasant truncation \n" 00920 " artifacts. \n" 00921 " [The default is to scale only if the computed values \n" 00922 " seem to need it -- are all <= 1.0 or there is at \n" 00923 " least one value beyond the integer upper limit.] \n" 00924 " \n" 00925 " ** In earlier versions of 3dcalc, scaling (if used) was \n" 00926 " applied to all sub-bricks equally -- a common scale \n" 00927 " factor was used. This would cause trouble if the \n" 00928 " values in different sub-bricks were in vastly \n" 00929 " different scales. In this version, each sub-brick \n" 00930 " gets its own scale factor. To override this behavior,\n" 00931 " use the '-gscale' option. \n" 00932 " \n" 00933 " -gscale = Same as '-fscale', but also forces each output sub-brick \n" 00934 " to get the same scaling factor. This may be desirable \n" 00935 " for 3D+time datasets, for example. \n" 00936 " \n" 00937 " -nscale = Don't do any scaling on output to byte or short datasets.\n" 00938 " This may be especially useful when operating on mask \n" 00939 " datasets whose output values are only 0's and 1's. \n" 00940 #ifndef ALLOW_SUBV 00941 " ** The type and number of sub-bricks in a dataset can be \n" 00942 " printed out using the '3dinfo' program. \n" 00943 #else 00944 " ** Another way to achieve the effect of '-b3' is described\n" 00945 " below in the dataset 'INPUT' specification section. \n" 00946 #endif 00947 " \n" 00948 " -prefix pname = Use 'pname' for the output dataset prefix name. \n" 00949 " [default='calc'] \n" 00950 " \n" 00951 " -session dir = Use 'dir' for the output dataset session directory. \n" 00952 " [default='./'=current working directory] \n" 00953 " \n" 00954 " -dt tstep = Use 'tstep' as the TR for manufactured 3D+time datasets.\n" 00955 " \n" 00956 " -TR tstep = If not given, defaults to 1 second. \n" 00957 " \n" 00958 " -taxis N = If only 3D datasets are input (no 3D+time or .1D files),\n" 00959 " *OR* then normally only a 3D dataset is calculated. With \n" 00960 " -taxis N:tstep: this option, you can force the creation of a time axis\n" 00961 " of length 'N', optionally using time step 'tstep'. In\n" 00962 " such a case, you will probably want to use the pre- \n" 00963 " defined time variables 't' and/or 'k' in your \n" 00964 " expression, or each resulting sub-brick will be \n" 00965 " identical. For example: \n" 00966 " '-taxis 121:0.1' will produce 121 points in time, \n" 00967 " spaced with TR 0.1. \n" 00968 " \n" 00969 " N.B.: You can also specify the TR using the -dt option. \n" 00970 " N.B.: You can specify 1D input datasets using the \n" 00971 " '1D:n@val,n@val' notation to get a similar effect. \n" 00972 " For example: \n" 00973 " -dt 0.1 -w '1D:121@0' \n" 00974 " will have pretty much the same effect as \n" 00975 " -taxis 121:0.1\n" 00976 " N.B.: For both '-dt' and '-taxis', the 'tstep' value is in \n" 00977 " seconds. You can suffix it with 'ms' to specify that\n" 00978 " the value is in milliseconds instead; e.g., '-dt 2000ms'.\n" 00979 " \n" 00980 " -rgbfac A B C = For RGB input datasets, the 3 channels (r,g,b) are \n" 00981 " collapsed to one for the purposes of 3dcalc, using the\n" 00982 " formula value = A*r + B*g + C*b \n" 00983 " \n" 00984 " The default values are A=0.299 B=0.587 C=0.114, which \n" 00985 " gives the grayscale intensity. To pick out the Green \n" 00986 " channel only, use '-rgbfac 0 1 0', for example. Note \n" 00987 " that each channel in an RGB dataset is a byte in the \n" 00988 " range 0..255. Thus, '-rgbfac 0.001173 0.002302 0.000447'\n" 00989 " will compute the intensity rescaled to the range 0..1.0\n" 00990 " (i.e., 0.001173=0.299/255, etc.) \n" 00991 " \n" 00992 "------------------------------------------------------------------------\n" 00993 "DATASET TYPES: \n" 00994 "------------- \n" 00995 " \n" 00996 " The most common AFNI dataset types are 'byte', 'short', and 'float'. \n" 00997 " \n" 00998 " A byte value is an 8-bit signed integer (0..255), a short value ia a \n" 00999 " 16-bit signed integer (-32768..32767), and a float value is a 32-bit \n" 01000 " real number. A byte value has almost 3 decimals of accuracy, a short \n" 01001 " has almost 5, and a float has approximately 7 (from a 23+1 bit \n" 01002 " mantissa). \n" 01003 " \n" 01004 " Datasets can also have a scalar attached to each sub-brick. The main \n" 01005 " use of this is allowing a short type dataset to take on non-integral \n" 01006 " values, while being half the size of a float dataset. \n" 01007 " \n" 01008 " As an example, consider a short dataset with a scalar of 0.0001. This \n" 01009 " could represent values between -32.768 and +32.767, at a resolution of \n" 01010 " 0.001. One could represnt the difference between 4.916 and 4.917, for \n" 01011 " instance, but not 4.9165. Each number has 15 bits of accuracy, plus a \n" 01012 " sign bit, which gives 4-5 decimal places of accuracy. If this is not \n" 01013 " enough, then it makes sense to use the larger type, float. \n" 01014 " \n" 01015 "------------------------------------------------------------------------\n" 01016 "3D+TIME DATASETS: \n" 01017 "---------------- \n" 01018 " \n" 01019 " This version of 3dcalc can operate on 3D+time datasets. Each input \n" 01020 " dataset will be in one of these conditions: \n" 01021 " \n" 01022 " (A) Is a regular 3D (no time) dataset; or \n" 01023 " (B) Is a 3D+time dataset with a sub-brick index specified ('-b3'); or\n" 01024 " (C) Is a 3D+time dataset with no sub-brick index specified ('-b'). \n" 01025 " \n" 01026 " If there is at least one case (C) dataset, then the output dataset will\n" 01027 " also be 3D+time; otherwise it will be a 3D dataset with one sub-brick. \n" 01028 " When producing a 3D+time dataset, datasets in case (A) or (B) will be \n" 01029 " treated as if the particular brick being used has the same value at each\n" 01030 " point in time. \n" 01031 " \n" 01032 #ifdef ALLOW_BUCKETS 01033 " Multi-brick 'bucket' datasets may also be used. Note that if multi-brick\n" 01034 " (bucket or 3D+time) datasets are used, the lowest letter dataset will \n" 01035 " serve as the template for the output; that is, '-b fred+tlrc' takes \n" 01036 " precedence over '-c wilma+tlrc'. (The program 3drefit can be used to \n" 01037 " alter the .HEAD parameters of the output dataset, if desired.) \n" 01038 #endif 01039 01040 #ifdef ALLOW_SUBV 01041 " \n" 01042 "------------------------------------------------------------------------\n" 01043 MASTER_HELP_STRING 01044 " \n" 01045 "** WARNING: you cannot combine sub-brick selection of the form \n" 01046 " -b3 bambam+orig (the old method) \n" 01047 " with sub-brick selection of the form \n" 01048 " -b 'bambam+orig[3]' (the new method) \n" 01049 " If you try, the Doom of Mandos will fall upon you! \n" 01050 #endif 01051 " \n" 01052 "------------------------------------------------------------------------\n" 01053 "1D TIME SERIES: \n" 01054 "-------------- \n" 01055 " \n" 01056 " You can also input a '*.1D' time series file in place of a dataset. \n" 01057 " In this case, the value at each spatial voxel at time index n will be \n" 01058 " the same, and will be the n-th value from the time series file. \n" 01059 " At least one true dataset must be input. If all the input datasets \n" 01060 " are 3D (single sub-brick) or are single sub-bricks from multi-brick \n" 01061 " datasets, then the output will be a 'manufactured' 3D+time dataset. \n" 01062 " \n" 01063 " For example, suppose that 'a3D+orig' is a 3D dataset: \n" 01064 " \n" 01065 " 3dcalc -a a3D+orig -b b.1D -expr \"a*b\" \n" 01066 " \n" 01067 " The output dataset will 3D+time with the value at (x,y,z,t) being \n" 01068 " computed by a3D(x,y,z)*b(t). The TR for this dataset will be set \n" 01069 " to 'tstep' seconds -- this could be altered later with program 3drefit.\n" 01070 " Another method to set up the correct timing would be to input an \n" 01071 " unused 3D+time dataset -- 3dcalc will then copy that dataset's time \n" 01072 " information, but simply do not use that dataset's letter in -expr. \n" 01073 " \n" 01074 " If the *.1D file has multiple columns, only the first read will be \n" 01075 " used in this program. You can select a column to be the first by \n" 01076 " using a sub-vector selection of the form 'b.1D[3]', which will \n" 01077 " choose the 4th column (since counting starts at 0). \n" 01078 " \n" 01079 " '{...}' row selectors can also be used - see the output of '1dcat -help'\n" 01080 " for more details on these. Note that if multiple timeseries or 3D+time\n" 01081 " or 3D bucket datasets are input, they must all have the same number of \n" 01082 " points along the 'time' dimension. \n" 01083 " \n" 01084 "------------------------------------------------------------------------\n" 01085 "'1D:' INPUT: \n" 01086 "----------- \n" 01087 " \n" 01088 " You can input a 1D time series 'dataset' directly on the command line, \n" 01089 " without an external file. The 'filename for such input takes the \n" 01090 " general format \n" 01091 " \n" 01092 " '1D:n_1@val_1,n_2@val_2,n_3@val_3,...' \n" 01093 " \n" 01094 " where each 'n_i' is an integer and each 'val_i' is a float. For \n" 01095 " example \n" 01096 " \n" 01097 " -a '1D:5@0,10@1,5@0,10@1,5@0' \n" 01098 " \n" 01099 " specifies that variable 'a' be assigned to a 1D time series of 35, \n" 01100 " alternating in blocks between values 0 and value 1. \n" 01101 " \n" 01102 "------------------------------------------------------------------------\n" 01103 "'I:*.1D' and 'J:*.1D' and 'K:*.1D' INPUT: \n" 01104 "---------------------------------------- \n" 01105 " \n" 01106 " You can input a 1D time series 'dataset' to be defined as spatially \n" 01107 " dependent instead of time dependent using a syntax like: \n" 01108 " \n" 01109 " -c I:fred.1D \n" 01110 " \n" 01111 " This indicates that the n-th value from file fred.1D is to be associated\n" 01112 " with the spatial voxel index i=n (respectively j=n and k=n for 'J: and \n" 01113 " K: input dataset names). This technique can be useful if you want to \n" 01114 " scale each slice by a fixed constant; for example: \n" 01115 " \n" 01116 " -a dset+orig -b K:slicefactor.1D -expr 'a*b' \n" 01117 " \n" 01118 " In this example, the '-b' value only varies in the k-index spatial \n" 01119 " direction. \n" 01120 " \n" 01121 "------------------------------------------------------------------------\n" 01122 "COORDINATES and PREDEFINED VALUES: \n" 01123 "--------------------------------- \n" 01124 " \n" 01125 " If you don't use '-x', '-y', or '-z' for a dataset, then the voxel \n" 01126 " spatial coordinates will be loaded into those variables. For example, \n" 01127 " the expression 'a*step(x*x+y*y+z*z-100)' will zero out all the voxels \n" 01128 " inside a 10 mm radius of the origin x=y=z=0. \n" 01129 " \n" 01130 " Similarly, the '-t' value, if not otherwise used by a dataset or *.1D \n" 01131 " input, will be loaded with the voxel time coordinate, as determined \n" 01132 " from the header file created for the OUTPUT. Please note that the units\n" 01133 " of this are variable; they might be in milliseconds, seconds, or Hertz.\n" 01134 " In addition, slices of the dataset might be offset in time from one \n" 01135 " another, and this is allowed for in the computation of 't'. Use program\n" 01136 " 3dinfo to find out the structure of your datasets, if you are not sure.\n" 01137 " If no input datasets are 3D+time, then the effective value of TR is \n" 01138 " tstep in the output dataset, with t=0 at the first sub-brick. \n" 01139 " \n" 01140 " Similarly, the '-i', '-j', and '-k' values, if not otherwise used, \n" 01141 " will be loaded with the voxel spatial index coordinates. The '-l' \n" 01142 " (letter 'ell') value will be loaded with the temporal index coordinate.\n" 01143 " \n" 01144 " Otherwise undefined letters will be set to zero. In the future, \n" 01145 " new default values for other letters may be added. \n" 01146 " \n" 01147 " NOTE WELL: By default, the coordinate order of (x,y,z) is the order in \n" 01148 " ********* which the data array is stored on disk; this order is output\n" 01149 " by 3dinfo. The options below control can change this order:\n" 01150 " \n" 01151 " -dicom }= Sets the coordinates to appear in DICOM standard (RAI) order,\n" 01152 " -RAI }= (the AFNI standard), so that -x=Right, -y=Anterior , -z=Inferior,\n" 01153 " +x=Left , +y=Posterior, +z=Superior.\n" 01154 " \n" 01155 " -SPM }= Sets the coordinates to appear in SPM (LPI) order, \n" 01156 " -LPI }= so that -x=Left , -y=Posterior, -z=Inferior,\n" 01157 " +x=Right, +y=Anterior , +z=Superior.\n" 01158 " \n" 01159 "------------------------------------------------------------------------\n" 01160 "DIFFERENTIAL SUBSCRIPTS [22 Nov 1999]: \n" 01161 "----------------------- \n" 01162 " \n" 01163 " Normal calculations with 3dcalc are strictly on a per-voxel basis:\n" 01164 " there is no 'cross-talk' between spatial or temporal locations.\n" 01165 " The differential subscript feature allows you to specify variables\n" 01166 " that refer to different locations, relative to the base voxel.\n" 01167 " For example,\n" 01168 " -a fred+orig -b 'a[1,0,0,0]' -c 'a[0,-1,0,0]' -d 'a[0,0,2,0]'\n" 01169 " means: symbol 'a' refers to a voxel in dataset fred+orig,\n" 01170 " symbol 'b' refers to the following voxel in the x-direction,\n" 01171 " symbol 'c' refers to the previous voxel in the y-direction\n" 01172 " symbol 'd' refers to the 2nd following voxel in the z-direction\n" 01173 "\n" 01174 " To use this feature, you must define the base dataset (e.g., 'a')\n" 01175 " first. Then the differentially subscripted symbols are defined\n" 01176 " using the base dataset symbol followed by 4 integer subscripts,\n" 01177 " which are the shifts in the x-, y-, z-, and t- (or sub-brick index)\n" 01178 " directions. For example,\n" 01179 "\n" 01180 " -a fred+orig -b 'a[0,0,0,1]' -c 'a[0,0,0,-1]' -expr 'median(a,b,c)'\n" 01181 "\n" 01182 " will produce a temporal median smoothing of a 3D+time dataset (this\n" 01183 " can be done more efficiently with program 3dTsmooth).\n" 01184 "\n" 01185 " Note that the physical directions of the x-, y-, and z-axes depend\n" 01186 " on how the dataset was acquired or constructed. See the output of\n" 01187 " program 3dinfo to determine what direction corresponds to what axis.\n" 01188 "\n" 01189 " For convenience, the following abbreviations may be used in place of\n" 01190 " some common subscript combinations:\n" 01191 "\n" 01192 " [1,0,0,0] == +i [-1, 0, 0, 0] == -i\n" 01193 " [0,1,0,0] == +j [ 0,-1, 0, 0] == -j\n" 01194 " [0,0,1,0] == +k [ 0, 0,-1, 0] == -k\n" 01195 " [0,0,0,1] == +l [ 0, 0, 0,-1] == -l\n" 01196 "\n" 01197 " The median smoothing example can thus be abbreviated as\n" 01198 "\n" 01199 " -a fred+orig -b a+l -c a-l -expr 'median(a,b,c)'\n" 01200 "\n" 01201 " When a shift calls for a voxel that is outside of the dataset range,\n" 01202 " one of three things can happen:\n" 01203 "\n" 01204 " STOP => shifting stops at the edge of the dataset\n" 01205 " WRAP => shifting wraps back to the opposite edge of the dataset\n" 01206 " ZERO => the voxel value is returned as zero\n" 01207 "\n" 01208 " Which one applies depends on the setting of the shifting mode at the\n" 01209 " time the symbol using differential subscripting is defined. The mode\n" 01210 " is set by one of the switches '-dsSTOP', '-dsWRAP', or '-dsZERO'. The\n" 01211 " default mode is STOP. Suppose that a dataset has range 0..99 in the\n" 01212 " x-direction. Then when voxel 101 is called for, the value returned is\n" 01213 "\n" 01214 " STOP => value from voxel 99 [didn't shift past edge of dataset]\n" 01215 " WRAP => value from voxel 1 [wrapped back through opposite edge]\n" 01216 " ZERO => the number 0.0 \n" 01217 "\n" 01218 " You can set the shifting mode more than once - the most recent setting\n" 01219 " on the command line applies when a differential subscript symbol is\n" 01220 " encountered.\n" 01221 "\n" 01222 "------------------------------------------------------------------------\n" 01223 "PROBLEMS:\n" 01224 "-------- \n" 01225 "\n" 01226 " * Complex-valued datasets cannot be processed.\n" 01227 " * This program is not very efficient (but is faster than it once was).\n" 01228 " * Differential subscripts slow the program down even more.\n" 01229 "\n" 01230 "------------------------------------------------------------------------\n" 01231 "EXPRESSIONS:\n" 01232 "----------- \n" 01233 "\n" 01234 " Arithmetic expressions are allowed, using + - * / ** and parentheses.\n" 01235 " As noted above, datasets are referred to by single letter variable names.\n" 01236 " At this time, C relational, boolean, and conditional expressions are\n" 01237 " NOT implemented. Built in functions include:\n" 01238 "\n" 01239 " sin , cos , tan , asin , acos , atan , atan2, \n" 01240 " sinh , cosh , tanh , asinh , acosh , atanh , exp , \n" 01241 " log , log10, abs , int , sqrt , max , min , \n" 01242 " J0 , J1 , Y0 , Y1 , erf , erfc , qginv, qg , \n" 01243 " rect , step , astep, bool , and , or , mofn , \n" 01244 " sind , cosd , tand , median, lmode , hmode , mad , \n" 01245 " gran , uran , iran , eran , lran , orstat, \n" 01246 " mean , stdev, sem , Pleg\n" 01247 "\n" 01248 " where:\n" 01249 " * qg(x) = reversed cdf of a standard normal distribution\n" 01250 " * qginv(x) = inverse function to qg\n" 01251 " * min, max, atan2 each take 2 arguments ONLY\n" 01252 " * J0, J1, Y0, Y1 are Bessel functions (see Watson)\n" 01253 " * Pleg(m,x) is the m'th Legendre polynomial evaluated at x\n" 01254 " * erf, erfc are the error and complementary error functions\n" 01255 " * sind, cosd, tand take arguments in degrees (vs. radians)\n" 01256 " * median(a,b,c,...) computes the median of its arguments\n" 01257 " * mad(a,b,c,...) computes the MAD of its arguments\n" 01258 " * mean(a,b,c,...) computes the mean of its arguments\n" 01259 " * stdev(a,b,c,...) computes the standard deviation of its arguments\n" 01260 " * sem(a,b,c,...) computes the standard error of the mean of its arguments,\n" 01261 " where sem(n arguments) = stdev(same)/sqrt(n)\n" 01262 " * orstat(n,a,b,c,...) computes the n-th order statistic of\n" 01263 " {a,b,c,...} - that is, the n-th value in size, starting\n" 01264 " at the bottom (e.g., orstat(1,a,b,c) is the minimum)\n" 01265 " * lmode(a,b,c,...) and hmode(a,b,c,...) compute the mode\n" 01266 " of their arguments - lmode breaks ties by choosing the\n" 01267 " smallest value with the maximal count, hmode breaks ties by\n" 01268 " choosing the largest value with the maximal count\n" 01269 " [median,lmode,hmode take a variable number of arguments]\n" 01270 " * gran(m,s) returns a Gaussian deviate with mean=m, stdev=s\n" 01271 " * uran(r) returns a uniform deviate in the range [0,r]\n" 01272 " * iran(t) returns a random integer in the range [0..t]\n" 01273 " * eran(s) returns an exponentially distributed deviate\n" 01274 " * lran(t) returns a logistically distributed deviate\n" 01275 "\n" 01276 " You may use the symbol 'PI' to refer to the constant of that name.\n" 01277 " This is the only 2 letter symbol defined; all input files are\n" 01278 " referred to by 1 letter symbols. The case of the expression is\n" 01279 " ignored (in fact, it is converted to uppercase as the first step\n" 01280 " in the parsing algorithm).\n" 01281 "\n" 01282 " The following functions are designed to help implement logical\n" 01283 " functions, such as masking of 3D volumes against some criterion:\n" 01284 " step(x) = {1 if x>0 , 0 if x<=0},\n" 01285 " astep(x,y) = {1 if abs(x) > y , 0 otherwise} = step(abs(x)-y)\n" 01286 " rect(x) = {1 if abs(x)<=0.5, 0 if abs(x)>0.5},\n" 01287 " bool(x) = {1 if x != 0.0 , 0 if x == 0.0},\n" 01288 " notzero(x) = bool(x),\n" 01289 " iszero(x) = 1-bool(x) = { 0 if x != 0.0, 1 if x == 0.0 },\n" 01290 " equals(x,y) = 1-bool(x-y) = { 1 if x == y , 0 if x != y },\n" 01291 " ispositive(x) = { 1 if x > 0; 0 if x <= 0 },\n" 01292 " isnegative(x) = { 1 if x < 0; 0 if x >= 0 },\n" 01293 " and(a,b,...,c) = {1 if all arguments are nonzero, 0 if any are zero}\n" 01294 " or(a,b,...,c) = {1 if any arguments are nonzero, 0 if all are zero}\n" 01295 " mofn(m,a,...,c) = {1 if at least 'm' arguments are nonzero, 0 otherwise}\n" 01296 " argmax(a,b,...) = index of largest argument; = 0 if all args are 0\n" 01297 " argnum(a,b,...) = number of nonzero arguments\n" 01298 "\n" 01299 " [These last 5 functions take a variable number of arguments.]\n" 01300 "\n" 01301 " The following 27 new [Mar 1999] functions are used for statistical\n" 01302 " conversions, as in the program 'cdf':\n" 01303 " fico_t2p(t,a,b,c), fico_p2t(p,a,b,c), fico_t2z(t,a,b,c),\n" 01304 " fitt_t2p(t,a) , fitt_p2t(p,a) , fitt_t2z(t,a) ,\n" 01305 " fift_t2p(t,a,b) , fift_p2t(p,a,b) , fift_t2z(t,a,b) ,\n" 01306 " fizt_t2p(t) , fizt_p2t(p) , fizt_t2z(t) ,\n" 01307 " fict_t2p(t,a) , fict_p2t(p,a) , fict_t2z(t,a) ,\n" 01308 " fibt_t2p(t,a,b) , fibt_p2t(p,a,b) , fibt_t2z(t,a,b) ,\n" 01309 " fibn_t2p(t,a,b) , fibn_p2t(p,a,b) , fibn_t2z(t,a,b) ,\n" 01310 " figt_t2p(t,a,b) , figt_p2t(p,a,b) , figt_t2z(t,a,b) ,\n" 01311 " fipt_t2p(t,a) , fipt_p2t(p,a) , fipt_t2z(t,a) .\n" 01312 "\n" 01313 " See the output of 'cdf -help' for documentation on the meanings of\n" 01314 " and arguments to these functions. (After using one of these, you\n" 01315 " may wish to use program '3drefit' to modify the dataset statistical\n" 01316 " auxiliary parameters.)\n" 01317 "\n" 01318 " Computations are carried out in double precision before being\n" 01319 " truncated to the final output 'datum'.\n" 01320 "\n" 01321 " Note that the quotes around the expression are needed so the shell\n" 01322 " doesn't try to expand * characters, or interpret parentheses.\n" 01323 "\n" 01324 " (Try the 'ccalc' program to see how the expression evaluator works.\n" 01325 " The arithmetic parser and evaluator is written in Fortran-77 and\n" 01326 " is derived from a program written long ago by RW Cox to facilitate\n" 01327 " compiling on an array processor hooked up to a VAX. It's a mess,\n" 01328 " but it works - somewhat slowly.)\n" 01329 ) ; 01330 exit(0) ; 01331 } |
|
Definition at line 168 of file 3dcalc.c. References IJKAR_flar, MRI_FLOAT_PTR, mri_free(), mri_read_1D(), and MRI_IMAGE::nx. Referenced by CALC_read_opts().
00169 { 00170 MRI_IMAGE *tsim ; 00171 00172 if( ival < 0 || ival >= 26 ) return -1 ; 00173 00174 tsim = mri_read_1D( fname ) ; /* 16 Nov 1999: replaces mri_read_ascii */ 00175 if( tsim == NULL ) return -1 ; 00176 if( tsim->nx < 2 ){ mri_free(tsim) ; return -1 ; } 00177 00178 IJKAR_flim[ival] = tsim ; 00179 IJKAR_flar[ival] = MRI_FLOAT_PTR( IJKAR_flim[ival] ) ; 00180 return 0 ; 00181 } |
|
compute the overall minimum and maximum voxel values for a dataset Definition at line 1335 of file 3dcalc.c. References addto_args(), ADN_datum_all, ADN_directory_name, ADN_func_type, ADN_none, ADN_ntt, ADN_nvals, ADN_prefix, ADN_ttdel, ADN_ttdur, ADN_ttorg, ADN_tunits, AFNI_logger(), ANAT_EPI_TYPE, argc, Bfac, CALC_byte, CALC_datum, CALC_dshift, CALC_dshift_i, CALC_dshift_j, CALC_dshift_k, CALC_dshift_l, CALC_dshift_mode, CALC_ffac, CALC_float, CALC_gscale, CALC_has_timeshift, CALC_histpar, CALC_mangle_xyz, CALC_noffac, CALC_nscale, CALC_nvox, CALC_output_prefix, CALC_read_opts(), CALC_session, CALC_short, CALC_Syntax(), CALC_type, DATABLOCK_MEM_MALLOC, THD_3dim_dataset::daxes, THD_3dim_dataset::dblk, THD_datablock::diskptr, DSET_ARRAY, DSET_BRICK, DSET_BRICK_FACTOR, DSET_BRIKNAME, DSET_index_to_ix, DSET_index_to_jy, DSET_index_to_kz, DSET_ixyz_to_index, DSET_NVALS, DSET_NX, DSET_NY, DSET_NZ, DSHIFT_MODE_STOP, DSHIFT_MODE_WRAP, DSHIFT_MODE_ZERO, EDIT_coerce_scale_type(), EDIT_dset_items(), EDIT_empty_copy(), EDIT_substitute_brick(), EQUIV_DATAXES, ERROR_exit(), free, FUNC_FIM_TYPE, Gfac, THD_diskptr::header_name, IJKAR_dcod, IJKAR_flar, INFO_message(), ISANATBUCKET, ISFUNC, ISFUNCBUCKET, LOAD_IVEC3, machdep(), mainENTRY, malloc, THD_datablock::malloc_type, MANGLE_LPI, MAX, MCW_vol_amax(), MIN, mri_clear_data_pointer, mri_datum_size(), mri_free(), ntime, ntime_max, MRI_IMAGE::nx, PARSER_evaluate_vector(), PRINT_VERSION, PURGE_DSET, Rfac, THD_3dim_dataset::taxis, THD_3dind_to_3dmm(), THD_3dmm_to_dicomm(), thd_floatscan(), THD_is_file(), THD_load_statistics(), THD_timeof_vox(), THD_write_3dim_dataset(), tross_Addto_History(), tross_Append_History(), tross_Copy_History(), tross_Make_History(), TS_dt, TS_flar, TS_make, UNITS_SEC_TYPE, UNLOAD_FVEC3, WARNING_message(), and WROTE_DSET.
01336 { 01337 #define VSIZE 1024 01338 01339 double * atoz[26] ; 01340 int ii , ids , jj, kk, kt, ll, jbot, jtop ; 01341 THD_3dim_dataset * new_dset=NULL ; 01342 float ** buf; 01343 double temp[VSIZE]; 01344 int nbad ; /* 09 Aug 2000: check for bad results */ 01345 01346 THD_ivec3 iv ; 01347 THD_fvec3 fv ; 01348 float xxx[VSIZE], yyy[VSIZE], zzz[VSIZE] ; 01349 int iii,jjj,kkk , nx,nxy ; 01350 THD_dataxes * daxes ; 01351 01352 /*** read input options ***/ 01353 01354 if( argc < 2 || strncasecmp(argv[1],"-help",4) == 0 ) CALC_Syntax() ; 01355 01356 /*-- 20 Apr 2001: addto the arglist, if user wants to [RWCox] --*/ 01357 01358 mainENTRY("3dcalc main"); machdep() ; PRINT_VERSION("3dcalc") ; 01359 01360 { int new_argc ; char ** new_argv ; 01361 addto_args( argc , argv , &new_argc , &new_argv ) ; 01362 if( new_argv != NULL ){ argc = new_argc ; argv = new_argv ; } 01363 } 01364 01365 AFNI_logger("3dcalc",argc,argv) ; 01366 01367 for (ii=0; ii<26; ii++) ntime[ii] = 0 ; 01368 01369 CALC_read_opts( argc , argv ) ; 01370 01371 /*** make output dataset ***/ 01372 01373 if( ntime_max == 1 || TS_make == 1 ){ 01374 for( ids=0 ; ids < 26 ; ids++ ) if( CALC_dset[ids] != NULL ) break ; 01375 } else { 01376 for( ids=0 ; ids < 26 ; ids++ ) if( CALC_dset[ids] != NULL && 01377 ntime[ids] > 1 ) break ; 01378 } 01379 if( ids == 26 ) ERROR_exit("Can't find template dataset?!\n") ; 01380 01381 new_dset = EDIT_empty_copy( CALC_dset[ids] ) ; 01382 01383 /* 23 May 2005: check input datasets for axis consistency */ 01384 01385 for( iii=0 ; iii < 26 ; iii++ ){ 01386 if( iii != ids && 01387 CALC_dset[iii] != NULL && 01388 !EQUIV_DATAXES(new_dset->daxes,CALC_dset[iii]->daxes) ) 01389 WARNING_message("dataset '%c'=%s grid mismatch with %s\n", 01390 'a'+iii , DSET_BRIKNAME(CALC_dset[iii]) , 01391 DSET_BRIKNAME(CALC_dset[ids]) ) ; 01392 } 01393 01394 /** make history for new dataset */ 01395 01396 if( CALC_histpar < 0 ){ 01397 for( iii=jjj=0 ; iii < 26 ; iii++ ) /* count number of input datasets */ 01398 if( CALC_dset[iii] != NULL ) jjj++ ; 01399 } else { 01400 ids = CALC_histpar ; 01401 jjj = 1 ; 01402 } 01403 01404 if( jjj == 1 ){ 01405 tross_Copy_History( CALC_dset[ids] , new_dset ) ; 01406 } else { /* 27 Feb 2003 */ 01407 char hbuf[64] ; 01408 tross_Append_History( new_dset , 01409 "===================================" ) ; 01410 tross_Append_History( new_dset , 01411 "=== History of inputs to 3dcalc ===" ) ; 01412 for( iii=0 ; iii < 26 ; iii++ ){ 01413 if( CALC_dset[iii] != NULL ){ 01414 sprintf(hbuf,"=== Input %c:", 'a'+iii ) ; 01415 tross_Append_History( new_dset , hbuf ) ; 01416 tross_Addto_History( CALC_dset[iii] , new_dset ) ; 01417 } 01418 } 01419 tross_Append_History( new_dset , 01420 "===================================" ) ; 01421 } 01422 tross_Make_History( "3dcalc" , argc,argv , new_dset ) ; 01423 01424 if( CALC_datum < 0 ) CALC_datum = MRI_float ; /* 10 Feb 2003 */ 01425 01426 EDIT_dset_items( new_dset , 01427 ADN_prefix , CALC_output_prefix , 01428 ADN_directory_name , CALC_session , 01429 ADN_datum_all , CALC_datum , 01430 ADN_none ) ; 01431 01432 if( DSET_NVALS(new_dset) != ntime_max ) 01433 EDIT_dset_items( new_dset , ADN_nvals , ntime_max , ADN_none ) ; 01434 01435 /* 17 Apr 1998: if we are making up a 3D+time dataset, 01436 we need to attach some time axis info to it */ 01437 01438 if( TS_make ){ 01439 EDIT_dset_items( new_dset , 01440 ADN_ntt , ntime_max , 01441 ADN_ttdel , TS_dt , 01442 ADN_ttorg , 0.0 , 01443 ADN_ttdur , 0.0 , 01444 ADN_tunits , UNITS_SEC_TYPE , 01445 ADN_none ) ; 01446 } 01447 01448 if( ISFUNC(new_dset) && ! ISFUNCBUCKET(new_dset) && new_dset->taxis != NULL ) 01449 EDIT_dset_items( new_dset , ADN_func_type , FUNC_FIM_TYPE , ADN_none ) ; 01450 else if( ISANATBUCKET(new_dset) ) /* 30 Nov 1997 */ 01451 EDIT_dset_items( new_dset , ADN_func_type , ANAT_EPI_TYPE , ADN_none ) ; 01452 01453 if( THD_is_file(new_dset->dblk->diskptr->header_name) ) 01454 ERROR_exit("Output file %s already exists -- cannot continue!\n", 01455 new_dset->dblk->diskptr->header_name ) ; 01456 01457 for (ids=0; ids<26; ids++) 01458 atoz[ids] = (double *) malloc(sizeof(double) * VSIZE ) ; 01459 01460 for( ids=0 ; ids < 26 ; ids++ ) /* initialize to all zeros */ 01461 for (ii=0; ii<VSIZE; ii++) 01462 atoz[ids][ii] = 0.0 ; 01463 01464 /*** loop over time steps ***/ 01465 01466 nx = DSET_NX(new_dset) ; 01467 nxy = nx * DSET_NY(new_dset) ; daxes = new_dset->daxes ; 01468 01469 buf = (float **) malloc(sizeof(float *) * ntime_max); 01470 01471 for ( kt = 0 ; kt < ntime_max ; kt ++ ) { 01472 01473 if( CALC_verbose ) 01474 INFO_message("Computing sub-brick %d\n",kt) ; 01475 01476 /* 30 April 1998: only malloc output space as it is needed */ 01477 01478 buf[kt] = (float *) malloc(sizeof(float) * CALC_nvox); 01479 if( buf[kt] == NULL ) 01480 ERROR_exit("Can't malloc output dataset sub-brick %d!\n",kt) ; 01481 01482 /*** loop over voxels ***/ 01483 01484 for ( ii = 0 ; ii < CALC_nvox ; ii += VSIZE ) { 01485 01486 jbot = ii ; 01487 jtop = MIN( ii + VSIZE , CALC_nvox ) ; 01488 01489 /* load (x,y,z) coords of these voxels into arrays, if needed */ 01490 01491 if( CALC_has_xyz ){ /* 17 May 2005 */ 01492 for( jj=jbot ; jj < jtop ; jj++ ){ 01493 LOAD_IVEC3( iv , jj%nx , (jj%nxy)/nx , jj/nxy ) ; 01494 fv = THD_3dind_to_3dmm( new_dset , iv ) ; 01495 if( CALC_mangle_xyz ) 01496 fv = THD_3dmm_to_dicomm(new_dset,fv) ; 01497 UNLOAD_FVEC3(fv,xxx[jj-jbot],yyy[jj-jbot],zzz[jj-jbot]) ; 01498 if( CALC_mangle_xyz == MANGLE_LPI ){ 01499 xxx[jj-jbot] = -xxx[jj-jbot] ; yyy[jj-jbot] = -yyy[jj-jbot] ; 01500 } 01501 } 01502 } 01503 01504 /* loop over datasets or other symbol definitions */ 01505 01506 for (ids = 0 ; ids < 26 ; ids ++ ) { /* the whole alphabet */ 01507 01508 /* 17 Apr 1998: if a time series is used here instead of a dataset, 01509 just copy the single value (or zero) to all voxels. */ 01510 01511 if( TS_flim[ids] != NULL ){ 01512 if( jbot == 0 ){ /* only must do this on first vector at each time */ 01513 double tval ; 01514 if( kt < TS_flim[ids]->nx ) tval = TS_flar[ids][kt] ; 01515 else tval = 0.0 ; 01516 01517 for (jj =jbot ; jj < jtop ; jj ++ ) 01518 atoz[ids][jj-ii] = tval ; 01519 } 01520 } 01521 01522 /* 22 Feb 2005: IJKAR 1D arrays */ 01523 01524 else if( IJKAR_flim[ids] != NULL ){ 01525 int ss , ix=IJKAR_flim[ids]->nx ; 01526 01527 switch( IJKAR_dcod[ids] ){ 01528 case 8: 01529 for( jj=jbot ; jj < jtop ; jj++ ){ 01530 ss = (jj%nx) ; 01531 atoz[ids][jj-jbot] = (ss < ix) ? IJKAR_flar[ids][ss] : 0.0 ; 01532 } 01533 break ; 01534 case 9: 01535 for( jj=jbot ; jj < jtop ; jj++ ){ 01536 ss = ((jj%nxy)/nx) ; 01537 atoz[ids][jj-jbot] = (ss < ix) ? IJKAR_flar[ids][ss] : 0.0 ; 01538 } 01539 break ; 01540 case 10: 01541 for( jj=jbot ; jj < jtop ; jj++ ){ 01542 ss = (jj/nxy) ; 01543 atoz[ids][jj-jbot] = (ss < ix) ? IJKAR_flar[ids][ss] : 0.0 ; 01544 } 01545 break ; 01546 } 01547 } 01548 01549 /* 22 Nov 1999: if a differentially subscripted dataset is here */ 01550 01551 else if( CALC_dshift[ids] >= 0 ){ 01552 int jds = CALC_dshift[ids] ; /* actual dataset index */ 01553 int kts , jjs , ix,jy,kz ; 01554 int id=CALC_dshift_i[ids] , jd=CALC_dshift_j[ids] , 01555 kd=CALC_dshift_k[ids] , ld=CALC_dshift_l[ids] ; 01556 int ijkd = ((id!=0) || (jd!=0) || (kd!=0)) ; 01557 int dsx = DSET_NX(CALC_dset[jds]) - 1 ; 01558 int dsy = DSET_NY(CALC_dset[jds]) - 1 ; 01559 int dsz = DSET_NZ(CALC_dset[jds]) - 1 ; 01560 int dst = ntime[jds] - 1 ; 01561 int mode = CALC_dshift_mode[ids] , dun=0 ; 01562 01563 kts = kt + ld ; /* t shift */ 01564 if( kts < 0 || kts > dst ){ 01565 switch( mode ){ 01566 case DSHIFT_MODE_ZERO: 01567 for( jj=jbot ; jj < jtop ; jj++ ) atoz[ids][jj-ii] = 0.0 ; 01568 dun = 1 ; 01569 break ; 01570 default: 01571 case DSHIFT_MODE_STOP: 01572 if( kts < 0 ) kts = 0 ; 01573 else if( kts > dst ) kts = dst ; 01574 break ; 01575 case DSHIFT_MODE_WRAP: 01576 while( kts < 0 ) kts += (dst+1) ; 01577 while( kts > dst ) kts -= (dst+1) ; 01578 break ; 01579 } 01580 } 01581 01582 if( !dun ){ 01583 for( dun=0,jj=jbot ; jj < jtop ; jj++ ){ 01584 jjs = jj ; 01585 if( ijkd ){ 01586 ix = DSET_index_to_ix(CALC_dset[jds],jj) ; 01587 jy = DSET_index_to_jy(CALC_dset[jds],jj) ; 01588 kz = DSET_index_to_kz(CALC_dset[jds],jj) ; 01589 01590 ix += id ; /* x shift */ 01591 if( ix < 0 || ix > dsx ){ 01592 switch( mode ){ 01593 case DSHIFT_MODE_ZERO: 01594 atoz[ids][jj-ii] = 0.0 ; dun = 1 ; 01595 break ; 01596 default: 01597 case DSHIFT_MODE_STOP: 01598 if( ix < 0 ) ix = 0 ; 01599 else if( ix > dsx ) ix = dsx ; 01600 break ; 01601 case DSHIFT_MODE_WRAP: 01602 while( ix < 0 ) ix += (dsx+1) ; 01603 while( ix > dsx ) ix -= (dsx+1) ; 01604 break ; 01605 } 01606 } 01607 if( dun ){ dun=0; continue; } /* go to next jj */ 01608 01609 jy += jd ; /* y shift */ 01610 if( jy < 0 || jy > dsy ){ 01611 switch( mode ){ 01612 case DSHIFT_MODE_ZERO: 01613 atoz[ids][jj-ii] = 0.0 ; dun = 1 ; 01614 break ; 01615 default: 01616 case DSHIFT_MODE_STOP: 01617 if( jy < 0 ) jy = 0 ; 01618 else if( jy > dsy ) jy = dsy ; 01619 break ; 01620 case DSHIFT_MODE_WRAP: 01621 while( jy < 0 ) jy += (dsy+1) ; 01622 while( jy > dsy ) jy -= (dsy+1) ; 01623 break ; 01624 } 01625 } 01626 if( dun ){ dun=0; continue; } /* go to next jj */ 01627 01628 kz += kd ; /* z shift */ 01629 if( kz < 0 || kz > dsz ){ 01630 switch( mode ){ 01631 case DSHIFT_MODE_ZERO: 01632 atoz[ids][jj-ii] = 0.0 ; dun = 1 ; 01633 break ; 01634 default: 01635 case DSHIFT_MODE_STOP: 01636 if( kz < 0 ) kz = 0 ; 01637 else if( kz > dsz ) kz = dsz ; 01638 break ; 01639 case DSHIFT_MODE_WRAP: 01640 while( kz < 0 ) kz += (dsz+1) ; 01641 while( kz > dsz ) kz -= (dsz+1) ; 01642 break ; 01643 } 01644 } 01645 if( dun ){ dun=0; continue; } /* go to next jj */ 01646 01647 jjs = DSET_ixyz_to_index(CALC_dset[jds],ix,jy,kz) ; 01648 } 01649 switch( CALC_type[jds] ) { 01650 case MRI_short: 01651 atoz[ids][jj-ii] = CALC_short[jds][kts][jjs] 01652 * CALC_ffac[jds][kts]; 01653 break ; 01654 case MRI_float: 01655 atoz[ids][jj-ii] = CALC_float[jds][kts][jjs] 01656 * CALC_ffac[jds][kts]; 01657 break ; 01658 case MRI_byte: 01659 atoz[ids][jj-ii] = CALC_byte[jds][kts][jjs] 01660 * CALC_ffac[jds][kts]; 01661 break ; 01662 case MRI_rgb: 01663 atoz[ids][jj-ii] = Rfac*CALC_byte[jds][kts][3*jjs ] 01664 +Gfac*CALC_byte[jds][kts][3*jjs+1] 01665 +Bfac*CALC_byte[jds][kts][3*jjs+2] ; 01666 break ; 01667 } 01668 } 01669 } 01670 } 01671 01672 /* the case of a 3D dataset (i.e., only 1 sub-brick) */ 01673 01674 else if ( ntime[ids] == 1 && CALC_type[ids] >= 0 ) { 01675 switch( CALC_type[ids] ) { 01676 case MRI_short: 01677 if( CALC_noffac[ids] ) /* 14 Nov 2003 */ 01678 for (jj =jbot ; jj < jtop ; jj ++ ) 01679 atoz[ids][jj-ii] = CALC_short[ids][0][jj] ; 01680 else 01681 for (jj =jbot ; jj < jtop ; jj ++ ) 01682 atoz[ids][jj-ii] = CALC_short[ids][0][jj] * CALC_ffac[ids][0] ; 01683 break; 01684 01685 case MRI_float: 01686 if( CALC_noffac[ids] ) /* 14 Nov 2003 */ 01687 for (jj =jbot ; jj < jtop ; jj ++ ) 01688 atoz[ids][jj-ii] = CALC_float[ids][0][jj] ; 01689 else 01690 for (jj =jbot ; jj < jtop ; jj ++ ) 01691 atoz[ids][jj-ii] = CALC_float[ids][0][jj] * CALC_ffac[ids][0] ; 01692 break; 01693 01694 case MRI_byte: 01695 if( CALC_noffac[ids] ) /* 14 Nov 2003 */ 01696 for (jj =jbot ; jj < jtop ; jj ++ ) 01697 atoz[ids][jj-ii] = CALC_byte[ids][0][jj] ; 01698 else 01699 for (jj =jbot ; jj < jtop ; jj ++ ) 01700 atoz[ids][jj-ii] = CALC_byte[ids][0][jj] * CALC_ffac[ids][0] ; 01701 break; 01702 01703 case MRI_rgb: 01704 for (jj =jbot ; jj < jtop ; jj ++ ) 01705 atoz[ids][jj-ii] = Rfac*CALC_byte[ids][0][3*jj ] 01706 +Gfac*CALC_byte[ids][0][3*jj+1] 01707 +Bfac*CALC_byte[ids][0][3*jj+2] ; 01708 break; 01709 } 01710 } 01711 01712 /* the case of a 3D+time dataset (or a bucket, etc.) */ 01713 01714 else if( ntime[ids] > 1 && CALC_type[ids] >= 0 ) { 01715 switch ( CALC_type[ids] ) { 01716 case MRI_short: 01717 if( CALC_noffac[ids] ) 01718 for (jj = jbot ; jj < jtop ; jj ++ ) 01719 atoz[ids][jj-ii] = CALC_short[ids][kt][jj] ; 01720 else 01721 for (jj = jbot ; jj < jtop ; jj ++ ) 01722 atoz[ids][jj-ii] = CALC_short[ids][kt][jj] * CALC_ffac[ids][kt]; 01723 break; 01724 01725 case MRI_float: 01726 if( CALC_noffac[ids] ) 01727 for (jj = jbot ; jj < jtop ; jj ++ ) 01728 atoz[ids][jj-ii] = CALC_float[ids][kt][jj] ; 01729 else 01730 for (jj = jbot ; jj < jtop ; jj ++ ) 01731 atoz[ids][jj-ii] = CALC_float[ids][kt][jj] * CALC_ffac[ids][kt]; 01732 break; 01733 01734 case MRI_byte: 01735 if( CALC_noffac[ids] ) 01736 for (jj = jbot ; jj < jtop ; jj ++ ) 01737 atoz[ids][jj-ii] = CALC_byte[ids][kt][jj] ; 01738 else 01739 for (jj = jbot ; jj < jtop ; jj ++ ) 01740 atoz[ids][jj-ii] = CALC_byte[ids][kt][jj] * CALC_ffac[ids][kt]; 01741 break; 01742 01743 case MRI_rgb: 01744 for (jj =jbot ; jj < jtop ; jj ++ ) 01745 atoz[ids][jj-ii] = Rfac*CALC_byte[ids][kt][3*jj ] 01746 +Gfac*CALC_byte[ids][kt][3*jj+1] 01747 +Bfac*CALC_byte[ids][kt][3*jj+2] ; 01748 break; 01749 } 01750 } 01751 01752 /* the case of a voxel (x,y,z) or (i,j,k) coordinate */ 01753 01754 else if( CALC_has_predefined ) { 01755 01756 switch( ids ){ 01757 case 23: /* x */ 01758 if( HAS_X ) 01759 for( jj=jbot ; jj < jtop ; jj++ ) 01760 atoz[ids][jj-ii] = xxx[jj-ii] ; 01761 break ; 01762 01763 case 24: /* y */ 01764 if( HAS_Y ) 01765 for( jj=jbot ; jj < jtop ; jj++ ) 01766 atoz[ids][jj-ii] = yyy[jj-ii] ; 01767 break ; 01768 01769 case 25: /* z */ 01770 if( HAS_Z ) 01771 for( jj=jbot ; jj < jtop ; jj++ ) 01772 atoz[ids][jj-ii] = zzz[jj-ii] ; 01773 break ; 01774 01775 case 8: /* i */ 01776 if( HAS_I ) 01777 for( jj=jbot ; jj < jtop ; jj++ ) 01778 atoz[ids][jj-ii] = (jj%nx) ; 01779 break ; 01780 01781 case 9: /* j */ 01782 if( HAS_J ) 01783 for( jj=jbot ; jj < jtop ; jj++ ) 01784 atoz[ids][jj-ii] = ((jj%nxy)/nx) ; 01785 break ; 01786 01787 case 10: /* k */ 01788 if( HAS_K ) 01789 for( jj=jbot ; jj < jtop ; jj++ ) 01790 atoz[ids][jj-ii] = (jj/nxy) ; 01791 break ; 01792 01793 case 19: /* t */ 01794 if( HAS_T ) 01795 for( jj=jbot ; jj < jtop ; jj++ ) 01796 atoz[ids][jj-ii] = THD_timeof_vox(kt,jj,new_dset) ; 01797 break ; 01798 01799 case 11: /* l */ 01800 if( HAS_L ) 01801 for( jj=jbot ; jj < jtop ; jj++ ) 01802 atoz[ids][jj-ii] = kt ; 01803 break ; 01804 } /* end of switch on symbol subscript */ 01805 01806 } /* end of choice over data type (if-else cascade) */ 01807 } /* end of loop over datasets/symbols */ 01808 01809 /**** actually do the calculation work! ****/ 01810 01811 PARSER_evaluate_vector(CALC_code, atoz, jtop-jbot, temp); 01812 for ( jj = jbot ; jj < jtop ; jj ++ ) 01813 buf[kt][jj] = temp[jj-ii]; 01814 01815 } /* end of loop over space (voxels) */ 01816 01817 /* 09 Aug 2000: check results for validity */ 01818 01819 nbad = thd_floatscan( CALC_nvox , buf[kt] ) ; 01820 if( nbad > 0 ) 01821 WARNING_message("%d bad floats replaced by 0 in sub-brick %d\n\a", 01822 nbad , kt ) ; 01823 01824 /* 30 April 1998: purge 3D+time sub-bricks if possible */ 01825 01826 if( ! CALC_has_timeshift ){ 01827 for( ids=0 ; ids < 26 ; ids ++ ){ 01828 if( CALC_dset[ids] != NULL && ntime[ids] > 1 && 01829 CALC_dset[ids]->dblk->malloc_type == DATABLOCK_MEM_MALLOC ){ 01830 01831 void * ptr = DSET_ARRAY(CALC_dset[ids],kt) ; 01832 if( ptr != NULL ) free(ptr) ; 01833 mri_clear_data_pointer( DSET_BRICK(CALC_dset[ids],kt) ) ; 01834 } 01835 } 01836 } 01837 01838 } /* end of loop over time steps */ 01839 01840 for( ids=0 ; ids < 26 ; ids++ ){ 01841 if( CALC_dset[ids] != NULL ) PURGE_DSET( CALC_dset[ids] ) ; 01842 if( TS_flim[ids] != NULL ) mri_free( TS_flim[ids] ) ; 01843 if( IJKAR_flim[ids]!= NULL ) mri_free( IJKAR_flim[ids] ) ; 01844 } 01845 01846 /*** attach new data to output brick ***/ 01847 01848 switch( CALC_datum ){ 01849 01850 default: 01851 ERROR_exit("Somehow ended up with CALC_datum = %d\n",CALC_datum) ; 01852 exit(1) ; 01853 01854 /* the easy case! */ 01855 01856 case MRI_float:{ 01857 for( ii=0 ; ii < ntime_max ; ii++ ){ 01858 EDIT_substitute_brick(new_dset, ii, MRI_float, buf[ii]); 01859 DSET_BRICK_FACTOR(new_dset, ii) = 0.0; 01860 } 01861 } 01862 break ; 01863 01864 /* the harder cases */ 01865 01866 case MRI_byte: /* modified 31 Mar 1999 to scale each sub-brick */ 01867 case MRI_short:{ /* with its own factor, rather than use the same */ 01868 void ** dfim ; /* factor for each sub-brick -- RWCox */ 01869 float gtop , fimfac , gtemp ; 01870 01871 if( CALC_verbose ) 01872 INFO_message("Scaling output to type %s brick(s)\n", 01873 MRI_TYPE_name[CALC_datum] ) ; 01874 01875 dfim = (void ** ) malloc( sizeof( void * ) * ntime_max ) ; 01876 01877 if( CALC_gscale ){ /* 01 Apr 1999: global scaling */ 01878 gtop = 0.0 ; 01879 for( ii=0 ; ii < ntime_max ; ii++ ){ 01880 gtemp = MCW_vol_amax( CALC_nvox , 1 , 1 , MRI_float, buf[ii] ) ; 01881 gtop = MAX( gtop , gtemp ) ; 01882 if( gtemp == 0.0 ) 01883 WARNING_message("output sub-brick %d is all zeros!\n",ii) ; 01884 } 01885 } 01886 01887 for (ii = 0 ; ii < ntime_max ; ii ++ ) { 01888 01889 /* get max of this sub-brick, if not doing global scaling */ 01890 01891 if( ! CALC_gscale ){ 01892 gtop = MCW_vol_amax( CALC_nvox , 1 , 1 , MRI_float, buf[ii] ) ; 01893 if( gtop == 0.0 ) 01894 WARNING_message("output sub-brick %d is all zeros!\n",ii) ; 01895 } 01896 01897 /* compute scaling factor for this brick into fimfac */ 01898 01899 if( CALC_fscale ){ /* 16 Mar 1998: forcibly scale */ 01900 fimfac = (gtop > 0.0) ? MRI_TYPE_maxval[CALC_datum] / gtop : 0.0 ; 01901 01902 } else if( !CALC_nscale ){ /* maybe scale */ 01903 01904 fimfac = (gtop > MRI_TYPE_maxval[CALC_datum] || (gtop > 0.0 && gtop <= 1.0) ) 01905 ? MRI_TYPE_maxval[CALC_datum]/ gtop : 0.0 ; 01906 01907 if( fimfac == 0.0 && gtop > 0.0 ){ /* 28 Jul 2003: check for non-integers */ 01908 float fv,iv ; int kk ; 01909 for( kk=0 ; kk < CALC_nvox ; kk++ ){ 01910 fv = buf[ii][kk] ; iv = rint(fv) ; 01911 if( fabs(fv-iv) >= 0.01 ){ 01912 fimfac = MRI_TYPE_maxval[CALC_datum]/ gtop ; break ; 01913 } 01914 } 01915 } 01916 01917 } else { /* user says "don't scale" */ 01918 fimfac = 0.0 ; 01919 } 01920 01921 if( CALC_verbose ){ 01922 if( fimfac != 0.0 ) 01923 INFO_message("Sub-brick %d scale factor = %f\n",ii,fimfac) ; 01924 else 01925 INFO_message("Sub-brick %d: no scale factor\n" ,ii) ; 01926 } 01927 01928 /* make space for output brick and scale into it */ 01929 01930 dfim[ii] = (void *) malloc( mri_datum_size(CALC_datum) * CALC_nvox ) ; 01931 if( dfim[ii] == NULL ) ERROR_exit("malloc fails at output[%d]\n",ii); 01932 01933 if( CALC_datum == MRI_byte ){ /* 29 Nov 2004: check for bad byte-ization */ 01934 int nneg ; 01935 for( nneg=jj=0 ; jj < CALC_nvox ; jj++ ) nneg += (buf[ii][jj] < 0.0f) ; 01936 if( nneg > 0 ) 01937 WARNING_message( 01938 "sub-brick #%d has %d negative values set=0 in conversion to bytes\n", 01939 ii , nneg ) ; 01940 } 01941 01942 EDIT_coerce_scale_type( CALC_nvox , fimfac , 01943 MRI_float, buf[ii] , CALC_datum,dfim[ii] ) ; 01944 free( buf[ii] ) ; 01945 01946 /* put result into output dataset */ 01947 01948 EDIT_substitute_brick(new_dset, ii, CALC_datum, dfim[ii] ); 01949 01950 DSET_BRICK_FACTOR(new_dset,ii) = (fimfac != 0.0) ? 1.0/fimfac : 0.0 ; 01951 } 01952 } 01953 break ; 01954 } 01955 01956 if( CALC_verbose ) INFO_message("Computing output statistics\n") ; 01957 THD_load_statistics( new_dset ) ; 01958 01959 THD_write_3dim_dataset( NULL,NULL , new_dset , True ) ; 01960 if( CALC_verbose ) WROTE_DSET(new_dset) ; 01961 01962 exit(0) ; 01963 } |
|
Definition at line 147 of file 3dcalc.c. References MAX, MRI_FLOAT_PTR, mri_free(), mri_read_1D(), MRI_IMAGE::nx, TS_flar, and TS_nmax. Referenced by CALC_read_opts().
00148 { 00149 MRI_IMAGE *tsim ; 00150 00151 if( ival < 0 || ival >= 26 ) return -1 ; 00152 00153 tsim = mri_read_1D( fname ) ; /* 16 Nov 1999: replaces mri_read_ascii */ 00154 if( tsim == NULL ) return -1 ; 00155 if( tsim->nx < 2 ){ mri_free(tsim) ; return -1 ; } 00156 00157 TS_flim[ival] = tsim ; 00158 TS_nmax = MAX( TS_nmax , TS_flim[ival]->nx ) ; 00159 TS_flar[ival] = MRI_FLOAT_PTR( TS_flim[ival] ) ; 00160 return 0 ; 00161 } |
Variable Documentation
|
Definition at line 77 of file 3dcalc.c. Referenced by CALC_read_opts(). |
|
Definition at line 132 of file 3dcalc.c. Referenced by CALC_read_opts(), and main(). |
|
Definition at line 101 of file 3dcalc.c. Referenced by CALC_read_opts(), and main(). |
|
|
|
Definition at line 47 of file 3dcalc.c. Referenced by CALC_read_opts(), and main(). |
|
|
|
Definition at line 64 of file 3dcalc.c. Referenced by CALC_read_opts(), and main(). |
|
Definition at line 65 of file 3dcalc.c. Referenced by CALC_read_opts(), and main(). |
|
Definition at line 66 of file 3dcalc.c. Referenced by CALC_read_opts(), and main(). |
|
Definition at line 67 of file 3dcalc.c. Referenced by CALC_read_opts(), and main(). |
|
Definition at line 68 of file 3dcalc.c. Referenced by CALC_read_opts(), and main(). |
|
Definition at line 69 of file 3dcalc.c. Referenced by CALC_read_opts(), and main(). |
|
Definition at line 71 of file 3dcalc.c. Referenced by CALC_read_opts(). |
|
Definition at line 104 of file 3dcalc.c. Referenced by CALC_read_opts(), and main(). |
|
Definition at line 103 of file 3dcalc.c. Referenced by CALC_read_opts(), and main(). |
|
Definition at line 52 of file 3dcalc.c. Referenced by CALC_read_opts(). |
|
Definition at line 53 of file 3dcalc.c. Referenced by CALC_read_opts(), and main(). |
|
Definition at line 91 of file 3dcalc.c. Referenced by CALC_read_opts(). |
|
Definition at line 76 of file 3dcalc.c. Referenced by CALC_read_opts(). |
|
Definition at line 72 of file 3dcalc.c. Referenced by CALC_read_opts(), and main(). |
|
Definition at line 92 of file 3dcalc.c. Referenced by CALC_read_opts(). |
|
Definition at line 56 of file 3dcalc.c. Referenced by CALC_read_opts(), and main(). |
|
Definition at line 93 of file 3dcalc.c. Referenced by CALC_read_opts(), and main(). |
|
Definition at line 105 of file 3dcalc.c. Referenced by CALC_read_opts(), and main(). |
|
Definition at line 54 of file 3dcalc.c. Referenced by CALC_read_opts(), and main(). |
|
Definition at line 48 of file 3dcalc.c. Referenced by CALC_read_opts(), and main(). |
|
Definition at line 109 of file 3dcalc.c. Referenced by CALC_read_opts(), and main(). |
|
Definition at line 111 of file 3dcalc.c. Referenced by CALC_read_opts(), and main(). |
|
Definition at line 102 of file 3dcalc.c. Referenced by CALC_read_opts(), and main(). |
|
Definition at line 134 of file 3dcalc.c. Referenced by CALC_read_opts(). |
|
Definition at line 100 of file 3dcalc.c. Referenced by CALC_read_opts(), and main(). |
|
Definition at line 107 of file 3dcalc.c. Referenced by CALC_read_opts(). |
|
Definition at line 131 of file 3dcalc.c. Referenced by CALC_read_opts(), and main(). |
|
Definition at line 121 of file 3dcalc.c. Referenced by CALC_read_opts(), and main(). |
|
Definition at line 120 of file 3dcalc.c. Referenced by IJKAR_reader(), and main(). |
|
|
|
Definition at line 50 of file 3dcalc.c. Referenced by CALC_read_opts(), and main(). |
|
Definition at line 51 of file 3dcalc.c. Referenced by CALC_read_opts(), and main(). |
|
Definition at line 130 of file 3dcalc.c. Referenced by CALC_read_opts(), and main(). |
|
Definition at line 117 of file 3dcalc.c. Referenced by CALC_read_opts(), and main(). |
|
Definition at line 114 of file 3dcalc.c. Referenced by main(), and TS_reader(). |
|
|
|
Definition at line 116 of file 3dcalc.c. Referenced by CALC_read_opts(), and main(). |
|
Definition at line 115 of file 3dcalc.c. Referenced by CALC_read_opts(), and TS_reader(). |