===========================================================================
neuro_deconvolve.py:
Generate a script that would apply 3dTfitter to deconvolve an MRI signal
(BOLD response curve) into a neuro response curve.
Required parameters include an input dataset, a script name and an output
prefix.
----------------------------------------------------------------------
examples:
    1. deconvolve 3 seed time series
        The errts time series might be applied to the model, while the
        all_runs and fitts and for evaluation, along with the re-convolved
        time series generated by the script.
        Temporal partitioning is on the todo list.
           neuro_deconvolve.py                                      \
              -infiles seed.all_runs.1D seed.errts.1D seed.fitts.1D \
              -tr 2.0 -tr_nup 20 -kernel BLOCK                      \
              -script script.neuro.txt
old examples:
    old 1. 3d+time example
           neuro_deconvolve.py         \
              -input run1+orig         \
              -script script.neuro     \
              -mask_dset automask+orig \
              -prefix neuro_resp
    old 2. 1D example
           neuro_deconvolve.py        \
              -input epi_data.1D      \
              -tr 2.0                 \
              -script script.1d       \
              -prefix neuro.1D
----------------------------------------------------------------------
informational arguments:
    -help                       : display this help
    -hist                       : display the modification history
    -show_valid_opts            : display all valid options (short format)
    -ver                        : display the version number
----------------------------------------
required arguments:
    -input INPUT_DATASET        : set the data to deconvolve
        e.g. -input epi_data.1D
    -prefix PREFIX              : set the prefix for output filenames
        e.g. -prefix neuro_resp
                --> might create: neuro_resp+orig.HEAD/.BRIK
    -script SCRIPT              : specify the name of the output script
        e.g. -script neuro.script
----------------------------------------
optional arguments:
    -kernel KERNEL              : set the response kernel
        default: -kernel GAM
    -kernel_file FILENAME       : set the filename to store the kernel in
        default: -kernel_file resp_kernel.1D
      * This data should be at the upsampled TR.
        See -tr_nup.
    -mask_dset DSET             : set a mask dataset for 3dTfitter to use
        e.g. -mask_dset automask+orig
    -old                        : make old-style script
        Make pre-2015.02.24 script for 1D case.
    -tr TR                      : set the scanner TR
        e.g. -tr 2.0
        The TR is needed for 1D formatted input files.  It is not needed
        for AFNI 3d+time datasets, since the TR is in the file.
    -tr_nup NUP                 : upsample factor for TR
        e.g. -tr_nup 25
        Deconvolution is generally done on an upsampled TR, which allows
        for sub-TR events and more accurate deconvolution.  NUP should be
        the number of pieces each original TR is divided into.  For example,
        to upsample a TR of 2.0 to one of 0.1, use NUP = 20.
        TR must be an integral multiple of TR_UP.
    -verb LEVEL                 : set the verbose level
        e.g. -verb 2
- R Reynolds  June 12, 2008
===========================================================================